scholarly journals Large-scale deployment of in-rotation grass cultivation as a multifunctional soil climate mitigation strategy

2021 ◽  
Author(s):  
Oskar Englund ◽  
Blas Mola-Yudego ◽  
Pål Börjesson ◽  
Göran Berndes ◽  
Christel Cederberg ◽  
...  

The agricultural sector can contribute to climate change mitigation by reducing its own greenhouse gas (GHG) emissions and sequestering atmospheric carbon in vegetation and soils, and by providing biomass for substituting fossil fuels and other GHG intensive products in the energy, industry and transport sectors. New policies at EU level provide incentives for more sustainable land use practices, for example, cultivation systems using perennial plants that provide biomass for food, bioenergy and other biobased products along with land carbon sequestration and other environmental benefits. Based on spatial modelling across more than 81,000 landscapes in Europe, we find that introduction of grass-clover leys into rotations with annual crops could result in soil organic carbon sequestration corresponding to 5-10% of total current GHG emissions from agriculture in EU27+UK, annually until 2050. The combined annual GHG savings from soil carbon sequestration and use of biogas produced in connection to grass-based biorefineries equals 13-48% of current GHG emissions from agriculture. The assessed environmental co-benefits (reduced wind and water erosion, reduced nitrogen emissions to water, and mitigation of impacts associated with flooding) are considerable. Besides policy instruments, new markets for grass biomass, e.g., as feedstock for producing biofuels and protein concentrate, can incentivize widespread deployment of in-rotation grass cultivation.

2021 ◽  
Author(s):  
Matthias Kuhnert ◽  
Michael Martin ◽  
Matthew Mcgrath ◽  
Pete Smith

<p>Greenhouse gas (GHG) emissions contribute to climate change. Agricultural production contributes 10 – 14 % of the global anthropogenic GHG emission, including 37 % from soils (Paustian et al., 2016). Monitoring and analysis of emissions from agriculture is the basis for reducing GHG emissions and applying mitigation options. Measuring and estimating emissions from the agricultural sector are challenging and modelling is a useful tool to capture the heterogeneity of the dynamics. Agricultural management is the main driver for the carbon and nitrogen dynamics in croplands, which makes model approaches difficult, as potentially there is great heterogeneity in the influencing factors, but also a lack of robust data for management data for larger scales. Additionally, measurements of GHG emissions are scarce, on small (spatial and temporal) scales, or do not reflect the entire range of system variable combinations. This hinders the evaluation of large scale simulation results. The objective of the study was to simulate the GHG emissions (CO<sub>2</sub> and N<sub>2</sub>O) for European croplands and use national inventory data for the evaluation of the results. We used the model ECOSSE which is based on the carbon model RothC and the nitrogen model SUNDIAL. For yield production, the primary production model MIAMI is coupled with ECOSSE. The model structure allows small scale differences (resolution for simulation is 0.1°) to be captured, while simulating monthly time steps. This balances the uncertainty of the available input data with the accuracy of the simulated results. The model shows reasonable results for the CO<sub>2</sub> emissions, but underestimates heterotrophic respiration, which leads to an overestimation of carbon fluxes to the soil. Nitrogen emissions are underestimated due to underestimation of fertilizer applications in some hot spots. The comparison with national inventories that depend mainly on statistics using simpler approaches shows differences to the simulation approach, which indicates the strong dependency of the emissions on the management data. The model approach provides the spatial distribution of the emissions as well as inter-annual dynamics. The changes on the model showed already the improved performances by the model and the extension to include more target variables. More sub-national and sub-annual data sets for evaluation will allow a further improvement of the model performance. </p>


2021 ◽  
Author(s):  
Leonor Rodrigues ◽  
Brieuc Hardy ◽  
Bruno Huyghebaert ◽  
Jens Leifeld

<p>To meet the Paris Agreement goal of limiting average global warming to less than 1.5°C above pre-industrial temperatures, European Union (EU) aims to reduce by 40% its domestic greenhouse gas (GHG) emissions by 2030 and in the longer term to become the world’s first climate-neutral economy by 2050 (“Green Deal”). Today, 10% of the European GHG emissions derive directly from agriculture, and measures to decrease or compensate these emissions are required for achieving climatic goals. The role of soils in the global carbon cycle and the importance of reducing GHG emissions from agriculture has been increasingly acknowledged (IPCC, 2018, EEA report 2019). The “4 per 1000” initiative (4p1000) has become a prominent model for mitigating climate change and securing food security through an annual increase in soil organic carbon (SOC) stocks by 0.4 %, or 4‰ per year, in the first 0-40 cm of soil. However, the feasibility of the 4p1000 scenario and more generally the capacity of European countries to implement soil carbon sequestration (SCS) measures are highly uncertain.</p><p>As part of the EJP Soil project, we collected country-specific informationonon on the available knowledge and data of achievable carbon sequestration in mineral agricultural soils (cropland and grassland) across Europe, under various farming systems and pedo-climatic conditions. With this bottom-up approach, we provide a reality check on weather European countries are on track in relation to GHG reductions targets and the “4p1000” initiative. First results showed that the availability of datasets on SCS is heterogeneous across Europe. While northern Europe and central Europe is relatively well studied, references are lacking for parts of Southern, Southeaster and Western Europe. Further, this stocktake highlighted that the current country-based knowledge and engagement is still poor; very few countries have an idea on their national-wide achievable SCS potential. Nevertheless, national SCS potentials that were estimated for 13 countries support the view that SCS can contribute significantly to climate mitigation, covering from 1 to 28, 5 % of the domestic GHG emissions from the agricultural sector, which underpins the importance of further investigations.</p>


2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Yuquan W. Zhang ◽  
Bruce A. McCarl

The challenges and opportunities facing today's agriculture within the climate change context are at least twofold: in addition to adapting to a potentially more variable climate, agriculture may also take on the addition role of mitigating GHG emissions—such as providing renewable fuels to replace fossil fuels to some extent. For the US, a large-scale GHG mitigation effort through biofuels production pursuant to the Renewable Fuel Standard (RFS2) is already unfolding. A question thus naturally arises for the RFS2-relevant US agricultural sector: will climate change make it harder to meet the volume goals set in the RFS2 mandates, considering that both climate change and RFS2 may have significant impacts on US agriculture? The agricultural component of FASOMGHG that models the land use allocation within the conterminous US agricultural sector is employed to investigate the effects of climate change (with autonomous adaptation at farm level), coupled with RFS2, on US agriculture. The analysis shows that climate change eases the burden of meeting the RFS2 mandates increasing consumer welfare while decreasing producer welfare. The results also show that climate change encourages a more diversified use of biofuel feedstocks for cellulosic ethanol production, in particular crop residues.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Oskar Englund ◽  
Pål Börjesson ◽  
Blas Mola-Yudego ◽  
Göran Berndes ◽  
Ioannis Dimitriou ◽  
...  

AbstractWithin the scope of the new Common Agricultural Policy of the European Union, in coherence with other EU policies, new incentives are developed for farmers to deploy practices that are beneficial for climate, water, soil, air, and biodiversity. Such practices include establishment of multifunctional biomass production systems, designed to reduce environmental impacts while providing biomass for food, feed, bioenergy, and other biobased products. Here, we model three scenarios of large-scale deployment for two such systems, riparian buffers and windbreaks, across over 81,000 landscapes in Europe, and quantify the corresponding areas, biomass output, and environmental benefits. The results show that these systems can effectively reduce nitrogen emissions to water and soil loss by wind erosion, while simultaneously providing substantial environmental co-benefits, having limited negative effects on current agricultural production. This kind of beneficial land-use change using strategic perennialization is important for meeting environmental objectives while advancing towards a sustainable bioeconomy.


2019 ◽  
Vol 11 (23) ◽  
pp. 6783
Author(s):  
Camila Gramkow ◽  
Annela Anger-Kraavi

The recent IPCC Special Report on global warming of 1.5 °C emphasizes that rapid action to reduce greenhouse gas (GHG) emissions is vital to achieving the climate mitigation goals of the Paris Agreement. The most-needed substantial upscaling of investments in GHG mitigation options in all sectors, and particularly in manufacturing sectors, can be an opportunity for a green economic development leap in developing countries. Here, we use the Brazilian manufacturing sectors as an example to explore a transformation of its economy while contributing to the Paris targets. Projections of Brazil’s economic futures with and without a portfolio of fiscal policies to induce low carbon investments are produced up to 2030 (end year of Brazil’s Nationally Determined Contribution—NDC), by employing the large-scale macro econometric Energy-Environment-Economy Model, E3ME. Our findings highlight that the correct mix of green stimulus can help modernize and decarbonize the Brazilian manufacturing sectors and allow the country’s economy to grow faster (by up to 0.42% compared to baseline) while its carbon dioxide (CO2) emissions decline (by up to 14.5% in relation to baseline). Investment levels increase, thereby strengthening exports’ competitiveness and alleviating external constraints to long-term economic growth in net terms.


Recycling ◽  
2020 ◽  
Vol 5 (3) ◽  
pp. 18 ◽  
Author(s):  
Idi Guga Audu ◽  
Abraham Barde ◽  
Othniel Mintang Yila ◽  
Peter Azikiwe Onwualu ◽  
Buga Mohammed Lawal

Management of waste streams from abattoirs is a major challenge in developing countries. Harnessing these wastes as resources for the production of biogas and biofertilizer could contribute to curbing the environmental menace and to addressing the problems of energy and food deficits in Nigeria. However, large scale uptake of the technology is faced with techno-socio-economic and the lack of data required for effective investment decisions. In this study, the potential use of waste generated in the north central region of Nigerian abattoirs, representing approximately 12% of the land and 6% of the population, were evaluated for suitability for biogas and biofertilizer production. Data acquired from the study sites were used for computational estimation and integrated into strengths, weaknesses, opportunities, and threats (SWOT) analysis to give a detailed overview of the prospects and the limiting factors. The study revealed that high investment costs and public subsidies for fossil fuels are the key limiting factors while the prospects of tapping into the unexploited carbon markets and multiple socio-economic and environmental benefits favors investment. Public supports in the form of national policy reforms leading to intervention programs are required for progress.


Energies ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 3108 ◽  
Author(s):  
Edyta Sidorczuk-Pietraszko

Knowledge about the driving forces behind greenhouse gasses (GHG) emissions is crucial for informed and evidence-based policy towards mitigation of GHG emission and changing production and consumption patterns. Both national and regional-level authorities are capable of addressing their actions more effectively if they have information about the spatial distribution of phenomena related to the policies they conduct. In this context, the main aim of this paper is to explain the regional differences in carbon intensity in Poland. The differences in carbon intensity between regions and the national average were analysed using index decomposition analysis (IDA). Aggregate carbon intensity for regional economies as well as the carbon intensity of households was investigated. For both levels of analysis: total emissions and emission from households economic development is the key factor responsible for the inter-regional differences in carbon emission per capita. In the case of total emissions, the second important factor influencing these differences is the structure of the national power system, i.e., its concentration and the production of energy from fossil fuels. For households, disposable income per capita is a key factor of differences in CO2 emission per capita between regions. Higher households’ incomes contribute to higher emission per capita, mostly due to the shift in consumption towards more energy- and material-intensive goods. The contribution of energy emissivity is quite low and not as varied as in the case of income. This suggests that policy instruments targeted at the consumption of fuels can be rather uniform across regions, while more developed regions should also be subject to measures supporting less energy-intensive consumption. On the other hand, policy in less developed regions should prevent them from following the path of per capita emissions growth.


2006 ◽  
Vol 38 (2) ◽  
pp. 389-402 ◽  
Author(s):  
Burton C. English ◽  
Daniel G. De La Torre Ugarte ◽  
Marie E. Walsh ◽  
Chad Hellwinkel ◽  
Jamey Menard

The economic competitiveness of biobased industries is discussed by comparing the South relative to other regions of the United States and biomass as a feedstock source relative to fossil fuels such as coal and petroleum. An estimate of the biomass resource base is provided. Estimated changes in the agricultural sector over time resulting from the development of a large-scale biobased industry are reported, and a study on the potential to produce electricity from biomass compared with coal in the southern United States is reviewed. A biobased industry can increase net farm income and enhance economic development and job creation.


2021 ◽  
Author(s):  
Oskar Englund ◽  
Pål Börjesson ◽  
Blas Mola-Yudego ◽  
Göran Berndes ◽  
Ioannis Dimitriou ◽  
...  

Abstract The land sector needs to increase biomass production to meet multiple demands while reducing negative land use impacts and transitioning from being a source to being a sink of carbon. The new Common Agricultural Policy of the EU (CAP) steers towards a more needs-based, targeted approach to addressing multiple environmental and climatic objectives, in coherence with other EU policies. In relation to this, new schemes are developed to offer farmers direct payments to adapt practices beneficial for climate, water, soil, air and biodiversity. Multifunctional biomass production systems have potential to reduce environmental impacts from agriculture while maintaining or increasing biomass production for the bioeconomy across Europe. Here, we present the first attempt to model the deployment of two such systems, riparian buffers and windbreaks, across >81.000 landscapes in Europe (EU27 + UK), aiming to quantify the resulting ecosystem services and environmental benefits, considering three deployment scenarios with different incentives for implementation. We found that these multifunctional biomass production systems can reduce N emissions to water and soil loss by wind erosion, respectively, down to a “low” impact level all over Europe, while simultaneously providing substantial environmental co-benefits, using less than 1% of the area under annual crops in the EU. The GHG emissions savings of utilizing the biomass produced in these systems for replacing fossil alternatives, combined with the increases in soil organic carbon, correspond to 1-1,4% of total GHG emissions in EU28. The introduction of “eco-schemes” in the new CAP may resolve some of the main barriers to implementation of large-scale multifunctional biomass production systems. Increasing the knowledge of these opportunities among all EU member states, before designing and introducing country-specific Eco-scheme options in the new CAP, is critical.


2021 ◽  
Vol 13 (19) ◽  
pp. 10927
Author(s):  
Anton Orlov ◽  
Elena Klyuchnikova ◽  
Anna Korppoo

Most municipal solid waste (MSW) in Russia is disposed of in landfills, and only a relatively small fraction is recycled. The landfilling of waste leads to greenhouse gas (GHG) emissions, and air and groundwater pollution. However, recently, there have been some initiatives to improve waste management in the country. We assessed the economic and environmental benefits of waste recycling in the Murmansk region, in which a new waste recycling plant has been operating since 2019. We found that MSW recycling in the Murmansk region has induced a small, positive, job creation effect and could potentially lead to a non-negligible reduction in GHG emissions. Extrapolating the results from this case study to the country level, we found that recycling landfilled MSW in Russia could save approximately 154 million tons of GHG emissions in carbon dioxide equivalents annually, which is comparable to the total CO2 emissions from Algeria. The positive environmental and health-related impacts from the extensive implementation of MSW recycling in the country could be substantial. From this case study, we also learned that one of the biggest challenges for the waste recycling company in the Murmansk region is finding profitable markets for recycled materials. Moreover, due to the high investment and operational costs, recycling MSW led to a substantial increase in communal fees. However, there is potential to make waste recycling more cost effective. Most MSW in the Murmansk region is still separated at the recycling plant, while separating waste at the source could substantially reduce operational costs. Other challenges in the large-scale implementation of MSW recycling in Russia, such as a lack of investments and the population’s willingness to recycle waste, are also discussed.


Sign in / Sign up

Export Citation Format

Share Document