scholarly journals Influence of air masses on microphone vibration sensitivity

2021 ◽  
Author(s):  
Jonathan Walsh ◽  
Ronald N Miles

A study is presented of the primary design parameters that influence the vibration sensitivity of a microphone. The sensitivity to vibration is generally determined by the mass of the pressure-sensing diaphragm along with the mass of air that moves with it. The sound-sensing performance is improved as the pressure-sensing diaphragm is made thinner, but for a thin enough diaphragm, the moving air mass is not negligible relative to that of the diaphragm itself. In the present study, we develop a simple duct-acoustic model to account for the effect of the co-vibrating air. It is shown that an idealized massless, thin microphone diaphragm will still produce unwanted vibration signal due to acceleration of the air masses within the microphone. For a small microphone, the predicted pressure related acceleration sensitivity is found to be a simple function of the mass per unit area of the air inside of the microphone package. The acceleration sensitivity predicted using a finite element model of a one micrometer thick clamped flexible silicon diaphragm agrees with that predicted by the simple duct model. Measured and predicted acceleration sensitivities are compared for several MEMS and sub-miniature electret microphones of different back volume lengths . It is found that the primary design parameter determining vibration sensitivity for these microphones is the effective length of the column of air inside the microphone’s packaging. Microphones that have longer air-filled volumes had greater pressure related acceleration sensitivity.

Author(s):  
Xiaowei Cheng ◽  
Haoyou Zhang

AbstractUnder strong earthquakes, reinforced concrete (RC) walls in high-rise buildings, particularly in wall piers that form part of a coupled or core wall system, may experience coupled axial tension–flexure loading. In this study, a detailed finite element model was developed in VecTor2 to provide an effective tool for the further investigation of the seismic behaviour of RC walls subjected to axial tension and cyclic lateral loading. The model was verified using experimental data from recent RC wall tests under axial tension and cyclic lateral loading, and results showed that the model can accurately capture the overall response of RC walls. Additional analyses were conducted using the developed model to investigate the effect of key design parameters on the peak strength, ultimate deformation capacity and plastic hinge length of RC walls under axial tension and cyclic lateral loading. On the basis of the analysis results, useful information were provided when designing or assessing the seismic behaviour of RC slender walls under coupled axial tension–flexure loading.


2019 ◽  
Vol 19 (19) ◽  
pp. 12477-12494 ◽  
Author(s):  
Armin Sigmund ◽  
Korbinian Freier ◽  
Till Rehm ◽  
Ludwig Ries ◽  
Christian Schunk ◽  
...  

Abstract. To assist atmospheric monitoring at high-alpine sites, a statistical approach for distinguishing between the dominant air masses was developed. This approach was based on a principal component analysis using five gas-phase and two meteorological variables. The analysis focused on the Schneefernerhaus site at Zugspitze Mountain, Germany. The investigated year was divided into 2-month periods, for which the analysis was repeated. Using the 33.3 % and 66.6 % percentiles of the first two principal components, nine air mass regimes were defined. These regimes were interpreted with respect to vertical transport and assigned to the BL (recent contact with the boundary layer), UFT/SIN (undisturbed free troposphere or stratospheric intrusion), and HYBRID (influences of both the boundary layer and the free troposphere or ambiguous) air mass classes. The input data were available for 78 % of the investigated year. BL accounted for 31 % of the cases with similar frequencies in all seasons. UFT/SIN comprised 14 % of the cases but was not found from April to July. HYBRID (55 %) mostly exhibited intermediate characteristics, whereby 17 % of the HYBRID class suggested an influence from the marine boundary layer or the lower free troposphere. The statistical approach was compared to a mechanistic approach using the ceilometer-based mixing layer height from a nearby valley site and a detection scheme for thermally induced mountain winds. Due to data gaps, only 25 % of the cases could be classified using the mechanistic approach. Both approaches agreed well, except in the rare cases of thermally induced uplift. The statistical approach is a promising step towards a real-time classification of air masses. Future work is necessary to assess the uncertainty arising from the standardization of real-time data.


2010 ◽  
Vol 2010 ◽  
pp. 1-15 ◽  
Author(s):  
D. G. Kaskaoutis ◽  
P. G. Kosmopoulos ◽  
H. D. Kambezidis ◽  
P. T. Nastos

Aerosol optical depth at 550 nm () and fine-mode (FM) fraction data from Terra-MODIS were obtained over the Greater Athens Area covering the period February 2000–December 2005. Based on both and FM values three main aerosol types have been discriminated corresponding to urban/industrial aerosols, clean maritime conditions, and coarse-mode, probably desert dust, particles. Five main sectors were identified for the classification of the air-mass trajectories, which were further used in the analysis of the ( and FM data for the three aerosol types). The HYSPLIT model was used to compute back trajectories at three altitudes to investigate the relation between -FM and wind sector depending on the altitude. The accumulation of local pollution is favored in spring and corresponds to air masses at lower altitudes originating from Eastern Europe and the Balkan. Clean maritime conditions are rare over Athens, limited in the winter season and associated with air masses from the Western or Northwestern sector. The coarse-mode particles origin seems to be more complicated proportionally to the season. Thus, in summer the Northern sector dominates, while in the other seasons, and especially in spring, the air masses belong to the Southern sector enriched with Saharan dust aerosols.


2021 ◽  
Vol 12 (1) ◽  
pp. 689-700
Author(s):  
Ao Lei ◽  
Chuan-Xue Song ◽  
Yu-Long Lei ◽  
Yao Fu

Abstract. To make vehicles more reliable and efficient, many researchers have tried to improve the rotor performance. Although certain achievements have been made, the previous finite element model did not reflect the historical process of the motor rotor well, and the rigidity and mass in rotor optimization are less discussed together. This paper firstly introduces fractional order into a finite element model to conduct the harmonic response analysis. Then, we propose an optimal design framework of a rotor. In the framework, objective functions of rigidity and mass are defined, and the relationship between high rigidity and the first-order frequency is discussed. In order to find the optimal values, an accelerated optimization method based on response surface (ARSO) is proposed to find the suitable design parameters of rigidity and mass. Because the higher rigidity can be transformed into the first-order natural frequency by objective function, this paper analyzes the first-order frequency and mass of a motor rotor in the experiment. The results proved that not only is the fractional model effective, but also the ARSO can optimize the rotor structure. The first-order natural frequency of asynchronous motor rotor is increased by 11.2 %, and the mass is reduced by 13.8 %, which can realize high stiffness and light mass of asynchronous motor rotors.


2000 ◽  
Author(s):  
Hsien-Chie Cheng ◽  
Ming-Hsiao Lee ◽  
Kuo-Ning Chiang ◽  
Chung-Wen Chang

Abstract Since the electrical conduction in the COG assembly using a non-conductive adhesive takes place through the connection of the bump and the electrodes, the contact resistance can be applied to the evaluation of the design quality as well as the overall reliability of the particular assembly. It should be further noted that as reported in the literature (e.g., see Liu, 1996; Kristiansen et al, 1998; Nicewarner, 1999; Timsit, 1999), the contact resistance between the bump and the electrode on the substrate strongly depends on the contact stress and the contact area. A higher reliability of the packaging somewhat relies on better contact stability as well as larger bonding stresses. In order to explore the physical contact behaviors of a non-conductive adhesive type of COG assemblies, the contact pressure during manufacturing process sequences and during the temperature variation are extensively investigated using a three-dimensional nonlinear finite element model. The so-called death-birth simulation technique is applied to model the manufacturing process sequences. The typical COG assemblies associated with two types of micro-bumps that are made of different materials: metal and composite are considered as the test vehicle. The contact stress between the electrode and the bump is extensively compared at each manufacturing sequence as well as at elevated temperature in order to investigate the corresponding mechanical interaction. Furthermore, the adhesion stresses of the adhesive are also evaluated to further investigate the possibilities of cracking or delamination within the adhesive and in its interfaces with the die and with the substrate. At last, a parametric finite element model is performed over number of geometry/material design parameters to investigate their impact on the contact/adhesion stresses so as to attain a better reliability design.


2013 ◽  
Vol 13 (11) ◽  
pp. 5831-5856 ◽  
Author(s):  
M. Laborde ◽  
M. Crippa ◽  
T. Tritscher ◽  
Z. Jurányi ◽  
P. F. Decarlo ◽  
...  

Abstract. Aerosol hygroscopicity and refractory black carbon (rBC) properties were characterised during wintertime at a suburban site in Paris, one of the biggest European cities. Hygroscopic growth factor (GF) frequency distributions, characterised by distinct modes of more-hygroscopic background aerosol and non- or slightly hygroscopic aerosol of local (or regional) origin, revealed an increase of the relative contribution of the local sources compared to the background aerosol with decreasing particle size. BC-containing particles in Paris were mainly originating from fresh traffic emissions, whereas biomass burning only gave a minor contribution. The mass size distribution of the rBC cores peaked on average at an rBC core mass equivalent diameter of DMEV ~ 150 nm. The BC-containing particles were moderately coated (coating thickness Δcoat ~ 33 nm on average for rBC cores with DMEV = 180–280 nm) and an average mass absorption coefficient (MAC) of ~ 8.6 m2 g−1 at the wavelength λ = 880 nm was observed. Different time periods were selected to investigate the properties of BC-containing particles as a function of source and air mass type. The traffic emissions were found to be non-hygroscopic (GF ≈ 1.0), and essentially all particles with a dry mobility diameter (D0) larger than D0 = 110 nm contained an rBC core. rBC from traffic emissions was further observed to be uncoated within experimental uncertainty (Δcoat ~ 2 nm ± 10 nm), to have the smallest BC core sizes (maximum of the rBC core mass size distribution at DMEV ~ 100 nm) and to have the smallest MAC (~ 7.3 m2g−1 at λ = 880 nm). The biomass burning aerosol was slightly more hygroscopic than the traffic emissions (with a distinct slightly-hygroscopic mode peaking at GF ≈ 1.1–1.2). Furthermore, only a minor fraction (≤ 10%) of the slightly-hygroscopic particles with 1.1 ≤ GF ≤ 1.2 (and D0 = 265 nm) contained a detectable rBC core. The BC-containing particles from biomass burning were found to have a medium coating thickness as well as slightly larger mean rBC core sizes and MAC values compared to traffic emissions. The aerosol observed under the influence of aged air masses and air masses from Eastern Continental Europe was dominated by a~more-hygroscopic mode peaking at GF ≈ 1.6. Most particles (95%), in the more-hygroscopic mode at D0 = 265 nm, did not contain a detectable rBC core. A significant fraction of the BC-containing particles had a substantial coating with non-refractory aerosol components. MAC values of ~ 8.8 m2g−1 and ~ 8.3 m2g−1 at λ = 880 nm and mass mean rBC core diameters of 150 nm and 200 nm were observed for the aged and continental air mass types, respectively. The reason for the larger rBC core sizes compared to the fresh emissions – transport effects or a different rBC source – remains unclear. The dominant fraction of the BC-containing particles was found to have no or very little coating with non-refractory matter. The lack of coatings is consistent with the observation that the BC-containing particles are non- or slightly-hygroscopic, which makes them poor cloud condensation nuclei. It can therefore be expected that wet removal through nucleation scavenging is inefficient for fresh BC-containing particles in urban plumes. The mixing-state-specific cloud droplet activation behaviour of BC-containing particles including the effects of atmospheric aging processes should be considered in global simulations of atmospheric BC, as the wet removal efficiency remains a major source of uncertainty in its life-cycle.


2013 ◽  
Vol 765-767 ◽  
pp. 176-180
Author(s):  
Rong Chuang Zhang ◽  
Ao Xiang Liu ◽  
Jun Wang ◽  
Wan Shan Wang

In the optimization design of the gear hobbing machine bed, the finite element model is build and the static analysis and vibration modal analysis are performed. Then sensitivity analysis is used to gain the main design parameters which influence the bed property most. Furthermore, the multi-objective optimization design of the bed is performed in ANSYS Workbench with these design parameters as the design variables. At last, after all optimum proposals are showed up, Analytic Hierarchy Process is used to determine the weighting coefficient, and the most optimal solution is found out. As a result, the dynamic and static performances of the machine bed are improved under control of the machine bed mass.


2015 ◽  
Vol 15 (6) ◽  
pp. 2935-2951 ◽  
Author(s):  
A. Ripoll ◽  
M. C. Minguillón ◽  
J. Pey ◽  
J. L. Jimenez ◽  
D. A. Day ◽  
...  

Abstract. Real-time measurements of inorganic (sulfate, nitrate, ammonium, chloride and black carbon (BC)) and organic submicron aerosols (particles with an aerodynamic diameter of less than 1 μm) from a continental background site (Montsec, MSC, 1570 m a.s.l.) in the western Mediterranean Basin (WMB) were conducted for 10 months (July 2011–April 2012). An aerosol chemical speciation monitor (ACSM) was co-located with other online and offline PM1 measurements. Analyses of the hourly, diurnal, and seasonal variations are presented here, for the first time, for this region. Seasonal trends in PM1 components are attributed to variations in evolution of the planetary boundary layer (PBL) height, air mass origin, and meteorological conditions. In summer, the higher temperature and solar radiation increases convection, enhancing the growth of the PBL and the transport of anthropogenic pollutants towards high altitude sites. Furthermore, the regional recirculation of air masses over the WMB creates a continuous increase in the background concentrations of PM1 components and causes the formation of reservoir layers at relatively high altitudes. The combination of all these atmospheric processes results in a high variability of PM1 components, with poorly defined daily patterns, except for the organic aerosols (OA). OA was mostly composed (up to 90%) of oxygenated organic aerosol (OOA), split in two types: semivolatile (SV-OOA) and low-volatility (LV-OOA), the rest being hydrocarbon-like OA (HOA). The marked diurnal cycles of OA components regardless of the air mass origin indicates that they are not only associated with anthropogenic and long-range-transported secondary OA (SOA) but also with recently produced biogenic SOA. Very different conditions drive the aerosol phenomenology in winter at MSC. The thermal inversions and the lower vertical development of the PBL leave MSC in the free troposphere most of the day, being affected by PBL air masses only after midday, when the mountain breezes transport emissions from the adjacent valleys and plains to the top of the mountain. This results in clear diurnal patterns of both organic and inorganic concentrations. OA was also mainly composed (71%) of OOA, with contributions from HOA (5%) and biomass burning OA (BBOA; 24%). Moreover, in winter sporadic long-range transport from mainland Europe is observed. The results obtained in the present study highlight the importance of SOA formation processes at a remote site such as MSC, especially in summer. Additional research is needed to characterize the sources and processes of SOA formation at remote sites.


2018 ◽  
Vol 18 (4) ◽  
pp. 2973-2983 ◽  
Author(s):  
Christian Rolf ◽  
Bärbel Vogel ◽  
Peter Hoor ◽  
Armin Afchine ◽  
Gebhard Günther ◽  
...  

Abstract. The impact of air masses originating in Asia and influenced by the Asian monsoon anticyclone on the Northern Hemisphere stratosphere is investigated based on in situ measurements. A statistically significant increase in water vapor (H2O) of about 0.5 ppmv (11 %) and methane (CH4) of up to 20 ppbv (1.2 %) in the extratropical stratosphere above a potential temperature of 380 K was detected between August and September 2012 during the HALO aircraft missions Transport and Composition in the UT/LMS (TACTS) and Earth System Model Validation (ESMVal). We investigate the origin of the increased water vapor and methane using the three-dimensional Chemical Lagrangian Model of the Stratosphere (CLaMS). We assign the source of the moist air masses in the Asian region (northern and southern India, eastern China, southeast Asia, and the tropical Pacific) based on tracers of air mass origin used in CLaMS. The water vapor increase is correlated with an increase of the simulated Asian monsoon air mass contribution from about 10 % in August to about 20 % in September, which corresponds to a doubling of the influence from the Asian monsoon region. Additionally, back trajectories starting at the aircraft flight paths are used to differentiate transport from the Asian monsoon anticyclone and other source regions by calculating the Lagrangian cold point (LCP). The geographic location of the LCPs, which indicates the region where the set point of water vapor mixing ratio along these trajectories occurs, can be predominantly attributed to the Asian monsoon region.


Radiocarbon ◽  
1992 ◽  
Vol 34 (3) ◽  
pp. 745-752 ◽  
Author(s):  
Toshio Nakamura ◽  
Takakiyo Nakazawa ◽  
Nobuyuki Nakai ◽  
Hiroyuki Kitagawa ◽  
Hideyuki Honda ◽  
...  

In order to measure the concentrations of anthropogenically influenced gases in the stratosphere, we have collected air samples from the lower stratosphere since 1985, by a balloon-borne cryogenic sampling method, developed at the Institute of Space and Astronautical Science (ISAS). Air samples of ≃16 liters at STP were collected in the stratosphere at altitudes from 18.6 to 30.4 km, over the northeastern part of Japan (39.5°N, 139–142°E), on 1 September 1989. We conducted 14C analyses to study the vertical and horizontal air-mass movement in the stratosphere, and to investigate the air transport mechanism between troposphere and stratosphere. Carbon dioxide (containing a few mg carbon) was separated cryogenically from the air samples, and the 14C concentration of the CO2 was measured by a Tandetron accelerator mass spectrometer, using Fe-graphite targets prepared by reducing CO2 on Fe-powder with hydrogen in a Vycor tube at 650°. The 14C concentrations, expressed as Δ14C, of CO2 were 267–309‰ at altitudes of 21–30 km, and 134‰ at 19–20 km. The Δ14C values at 21–30 km were higher than those of the current tropospheric CO2, of around 80–200‰. The observed 14C concentrations, higher in the stratosphere than the troposphere, seem to be explained by large bomb-produced 14C inventories and/or high 14C production by cosmic rays, as well as weak vertical mixing of air masses in the stratosphere.


Sign in / Sign up

Export Citation Format

Share Document