Screening for community-acquired strains of methicillinresistant Staphylococcus aureus susceptible to extracts of Centaurea nigrescens

2018 ◽  
Vol 7 (3) ◽  
pp. 298-304
Author(s):  
Luke G Huggins ◽  
◽  
Kathryn D Robinson ◽  
Kyra P Lasko ◽  
Lauren B Clower ◽  
...  

The rates of infection by community-acquired multi-drug resistant Staphylococcus aureus have risen dramatically over fifteen years in the United States. Community-acquired multi-drug resistant Staphylococcus aureus is responsible for rapidly progressive diseases, including necrotizing pneumonia, severe sepsis, and necrotizing fasciitis. Consequently, novel antibacterial strategies are needed to combat the rising antibiotic resistance seen in community-acquired multi-drug resistant strains. We have screened the Nebraska Transposon Mutant Library for MRSA strains that are either susceptible or resistant to methanol extracts of Centaurea nigrescens leaves and flowers. 10 strains containing mutations affecting transporter proteins were identified as having either significant resistance or susceptibility to Centaurea extract. Insertions in two different drug efflux transporter families have been identified. The EmrB/QacA drug resistance transporter subfamily is a multi-drug efflux pump responsible for the export of toxic molecules from bacteria and yeast. The ABC transporters are involved in drug import and export. These results confirm the effectiveness of the screen as a means for identifying drug-resistance genes affected by the C. nigrescens methanolic extract and suggest a role for drug efflux proteins in the resistance of S. aureus community-acquired multi-drug resistant Staphylococcus aureus to antibacterial plant metabolites

2017 ◽  
Vol 61 (1) ◽  
pp. 81-88 ◽  
Author(s):  
Phurt Harnvoravongchai ◽  
Methinee Pipatthana ◽  
Surang Chankhamhaengdecha ◽  
Tavan Janvilisri

The incidence of Clostridium difficile infection has been elevated and becoming common in hospitals worldwide. Although antibiotics usually serve as the primary treatment for bacterial infection including C. difficile infection, limitations and failures have been evident due to drug resistance. Antibiotic resistance in C. difficile has been recognized as one of the most important factors to promote the infection and increase the level of severity and the recurrence rate. Several outbreaks in many countries have been linked to the emergence of hypervirulent drug-resistant strains. This pathogen harbours various mechanisms against the actions of antibiotics. The present study highlights three main drug-resistant strategies in C. difficile including drug inactivation, target modification and efflux pump. Other mechanisms that potentially contribute to drug-resistant traits in this organism are also discussed.


Author(s):  
Cecilia G. Carvalhaes ◽  
Helio S. Sader ◽  
Jennifer M. Streit ◽  
Mariana Castanheira ◽  
Rodrigo E. Mendes

Oritavancin displayed potent and stable activity (MIC 90 range, 0.06-0.5 mg/L) over time (2010-2019) against Gram-positive pathogens causing bloodstream infections, including methicillin-resistant Staphylococcus aureus and resistant subsets of Enterococcus spp. Daptomycin and linezolid were also active against methicillin-resistant S. aureus and vancomycin-resistant Enterococcus . Only oritavancin and linezolid remained active against Enterococcus faecium isolates displaying an elevated daptomycin MIC (i.e., 2-4 mg/L). Proportions of methicillin-resistant S. aureus and vancomycin-resistant Enterococcus within the respective S. aureus and enterococcal populations decreased over this period.


2015 ◽  
Vol 36 ◽  
pp. 23-26 ◽  
Author(s):  
Jalil Kardan Yamchi ◽  
Mehri Haeili ◽  
Seifu Gizaw Feyisa ◽  
Hossein Kazemian ◽  
Abdolrazagh Hashemi Shahraki ◽  
...  

1998 ◽  
Vol 16 (11) ◽  
pp. 3674-3690 ◽  
Author(s):  
D M Bradshaw ◽  
R J Arceci

For cytotoxic agents to have an effect on tumor cells, drugs must first be transported into the cell, potentially be metabolized to an active form, and interact appropriately with target molecules. A final common pathway of cytotoxic agents is usually the initiation of programmed cell death, or apoptosis. Tumor cells overcome the effects of cytotoxic agents at one or more of these levels. The classic multidrug-resistance (MDR) phenotype, as mediated by the drug efflux pump, P-glycoprotein, is one of the most extensively studied mechanisms of drug resistance. Additional drug transporters, such as the multidrug resistance-associated proteins (MRPs), have also been identified and can convey drug-resistance phenotypes. Important questions remain as to how and whether such transport systems can be specifically measured and effectively targeted to improve therapeutic outcomes. Furthermore, alterations in drug targets, drug metabolism, repair of DNA damage caused by drugs, and the inability to initiate programmed cell death can all contribute to drug resistance and must be ultimately considered in the explanation of tumor-cell resistance to therapy. Continued exploration of the pharmacologic methods to circumvent drug resistance, as well as strategies that involve targeted therapy and immunomodulation, should increase the specificity and efficacy of treatments for patients with cancer.


2004 ◽  
Vol 48 (7) ◽  
pp. 2415-2423 ◽  
Author(s):  
Xian-Zhi Li ◽  
Li Zhang ◽  
Hiroshi Nikaido

ABSTRACT The Mycobacterium smegmatis genome contains many genes encoding putative drug efflux pumps. Yet with the exception of lfrA, it is not clear whether these genes contribute to the intrinsic drug resistance of this organism. We showed first by reverse transcription (RT)-PCR that several of these genes, including lfrA as well as the homologues of Mycobacterium tuberculosis Rv1145, Rv1146, Rv1877, Rv2846c (efpA), and Rv3065 (mmr and emrE), were expressed at detectable levels in the strain mc2155. Null mutants each carrying an in-frame deletion of these genes were then constructed in M. smegmatis. The deletions of the lfrA gene or mmr homologue rendered the mutant more susceptible to multiple drugs such as fluoroquinolones, ethidium bromide, and acriflavine (two- to eightfold decrease in MICs). The deletion of the efpA homologue also produced increased susceptibility to these agents but unexpectedly also resulted in decreased susceptibility to rifamycins, isoniazid, and chloramphenicol (two- to fourfold increase in MICs). Deletion of the Rv1877 homologue produced some increased susceptibility to ethidium bromide, acriflavine, and erythromycin. The upstream region of lfrA contained a gene encoding a putative TetR family transcriptional repressor, dubbed LfrR. The deletion of lfrR elevated the expression of lfrA and produced higher resistance to multiple drugs. Multidrug-resistant single-step mutants, independent of LfrA and attributed to a yet-unidentified drug efflux pump (here called LfrX), were selected in vitro and showed decreased accumulation of norfloxacin, ethidium bromide, and acriflavine in intact cells. Finally, use of isogenic β-lactamase-deficient strains showed the contribution of LfrA and LfrX to resistance to certain β-lactams in M. smegmatis.


2020 ◽  
Vol 41 (11) ◽  
pp. 1583-1591 ◽  
Author(s):  
Rui Li ◽  
Chengyong Dong ◽  
Keqiu Jiang ◽  
Rui Sun ◽  
Yang Zhou ◽  
...  

Abstract Liver cancer is a major threat to human life and health, and chemotherapy has been the standard non-surgical treatment for liver cancer. However, the emergence of drug resistance of liver cancer cells has hindered the therapeutic effect of chemical drugs. The discovery of exosomes has provided new insights into the mechanisms underlying tumour cell resistance. In this study, we aimed to determine the proteins associated with drug resistance in tumour cells and to elucidate the underlying mechanisms. We found that Rab27B expression in drug (5-fluorouracil, 5Fu)-resistant Bel7402 (Bel/5Fu) cells increased significantly compared with that in drug-sensitive Bel7402 cells. In addition, Bel/5Fu cells secreted more exosomes under 5Fu stimulation. The number of exosomes secreted by Bel/5Fu cells significantly reduced after knocking down Rab27B, and the cellular concentration of 5Fu increased, enhancing its therapeutic effect. We also found that the administration of classical drug efflux pump (P-glycoprotein, P-gp) inhibitors together with knockdown of Rab27B further improved the therapeutic effects of chemotherapy drugs. In conclusion, our findings suggest that Rab27B could be a new therapeutic target in liver cancer.


2015 ◽  
Vol 81 (21) ◽  
pp. 7633-7643 ◽  
Author(s):  
Ricarda Maria Schmithausen ◽  
Sophia Ricarda Kellner ◽  
Sophia Veronika Schulze-Geisthoevel ◽  
Sylvia Hack ◽  
Steffen Engelhart ◽  
...  

ABSTRACTColonization of livestock with bacteria resistant to antibiotics is considered a risk for the entry of drug-resistant pathogens into the food chain. For this reason, there is a need for novel concepts to address the eradication of drug-resistant commensals on farms. In the present report, we evaluated the decontamination measures taken on a farm contaminated with methicillin-resistantStaphylococcus aureus(MRSA) andEnterobacteriaceaeexpressing extended-spectrum β-lactamases (ESBL-E). The decontamination process preceded the conversion from piglet breeding to gilt production. Microbiological surveillance showed that the decontamination measures eliminated the MRSA and ESBL-E strains that were detected on the farm before the complete removal of pigs, cleaning and disinfection of the stable, and construction of an additional stable meeting high-quality standards. After pig production was restarted, ESBL-E remained undetectable over 12 months, but MRSA was recovered from pigs and the environment within the first 2 days. However,spa(Staphylococcus aureusprotein A gene) typing revealed acquisition of an MRSA strain (type t034) that had not been detected before decontamination. Interestingly, we observed that a farmworker who had been colonized with the prior MRSA strain (t2011) acquired the new strain (t034) after 2 months. In summary, this report demonstrates that decontamination protocols similar to those used here can lead to successful elimination of contaminating MRSA and ESBL-E in pigs and the stable environment. Nevertheless, decontamination protocols do not prevent the acquisition of new MRSA strains.


mBio ◽  
2012 ◽  
Vol 3 (3) ◽  
Author(s):  
Veronica N. Kos ◽  
Christopher A. Desjardins ◽  
Allison Griggs ◽  
Gustavo Cerqueira ◽  
Andries Van Tonder ◽  
...  

ABSTRACTMethicillin-resistantStaphylococcus aureus(MRSA) strains are leading causes of hospital-acquired infections in the United States, and clonal cluster 5 (CC5) is the predominant lineage responsible for these infections. Since 2002, there have been 12 cases of vancomycin-resistantS. aureus(VRSA) infection in the United States—all CC5 strains. To understand this genetic background and what distinguishes it from other lineages, we generated and analyzed high-quality draft genome sequences for all available VRSA strains. Sequence comparisons show unambiguously that each strain independently acquired Tn1546and that all VRSA strains last shared a common ancestor over 50 years ago, well before the occurrence of vancomycin resistance in this species. In contrast to existing hypotheses on what predisposes this lineage to acquire Tn1546, the barrier posed by restriction systems appears to be intact in most VRSA strains. However, VRSA (and other CC5) strains were found to possess a constellation of traits that appears to be optimized for proliferation in precisely the types of polymicrobic infection where transfer could occur. They lack a bacteriocin operon that would be predicted to limit the occurrence of non-CC5 strains in mixed infection and harbor a cluster of unique superantigens and lipoproteins to confound host immunity. A frameshift indprA, which in other microbes influences uptake of foreign DNA, may also make this lineage conducive to foreign DNA acquisition.IMPORTANCEInvasive methicillin-resistantStaphylococcus aureus(MRSA) infection now ranks among the leading causes of death in the United States. Vancomycin is a key last-line bactericidal drug for treating these infections. However, since 2002, vancomycin resistance has entered this species. Of the now 12 cases of vancomycin-resistantS. aureus(VRSA), each was believed to represent a new acquisition of the vancomycin-resistant transposon Tn1546from enterococcal donors. All acquisitions of Tn1546so far have occurred in MRSA strains of the clonal cluster 5 genetic background, the most common hospital lineage causing hospital-acquired MRSA infection. To understand the nature of these strains, we determined and examined the nucleotide sequences of the genomes of all available VRSA. Genome comparison identified candidate features that position strains of this lineage well for acquiring resistance to antibiotics in mixed infection.


2016 ◽  
Vol 4 (2) ◽  
Author(s):  
Lesibana A. Malinga ◽  
Thomas Abeel ◽  
Christopher A. Desjardins ◽  
Talent C. Dlamini ◽  
Gail Cassell ◽  
...  

We report the whole-genome sequencing of two extensively drug-resistant tuberculosis strains belonging to the Euro-American S lineage. The RSA 114 strain showed single-nucleotide polymorphisms predicted to have drug efflux activity.


Sign in / Sign up

Export Citation Format

Share Document