scholarly journals Kontribusi Produksi Cellular Lightweight Concrete Serat Limbah Pelepah Kelapa Ssawit Terhadap Emisi CO2

2019 ◽  
Vol 6 (2) ◽  
pp. 104
Author(s):  
Zainuri Zainuri ◽  
Sujianto Sujianto ◽  
Adrianto Ahmad ◽  
Feliatra Feliatra

The vast palm oil plantations in Riau province which are 2,430,500 hectares (BPS Indonesia, 2017) have great potential as a provider of CPO (Crude Palm Oil) and other by-products and include waste. The midrib is always lowered along with the decrease in oil palm fruit bunches at harvest. Handling of waste from the midrib is only by stacking it in the field and letting it dry and self-destruct. Oil palm midribs are still a problem today because they can affect the global climate with greenhouse gas emissions. Carbon emissions can still be minimized by utilizing oil palm midribs. This study aims to measure the reduction of CO2 emissions as an added ingredient in the production of fiber CLC. Presentation of research results using descriptive methods. Research conducted in laboratories with an experimental approach is quantitative. The findings of this study are that the use of oil palm fronds as an added ingredient in producing CLC of solar and electric fuel fibers by 1 m3 can reduce CO2 emissions. The conclusion of this study is that CO2 emissions that can be reduced in the manufacture of 1 m3 of fiber CLC using diesel fuel is 111,582 tons/year and when using an electrically driven engine the CO2 emissions that can be reduced are 120.887 tons/year.

2019 ◽  
Vol 20 (1) ◽  
pp. 37
Author(s):  
Zainuri Zainuri ◽  
Dedi Zargustin ◽  
Gusneli Yanti ◽  
Shanti Wahyuni Megasari

ABSTRACTPalm oil midrib waste has not been utilized so far, so it has potentially contributed CO2 emissions into the atmosphere. The area of oil palm plantations in Riau province in 2015 was 2,400,900 hectares and in 2016 increased by 2,430,500 hectares. The oil palm midrib waste produced by 148 trees per hectare is 3.108 tons/month or 37.296 tons/year. It means that with 2,430,500 hectares of palm plantations, the resulting waste is 90,647,928 tons/year. The waste can affect the environment. If the palm oil midribs that have been cut and then stacked or burned will contribute large CO2 emissions to the environment. One of the efforts to utilize palm oil midrib waste is to use the fiber as an added material in the brick making. The purpose of this study is to calculate the reduction of CO2 emissions by utilizing palm oil midrib waste on fiber-brick production. The method used in this research is a descriptive method. The research carried out is quantitative with an experimental approach and laboratory research. The findings of this study are that the utilization of palm oil midrib fibers which are used as additives to the manufacture of fiber-brick concrete can reduce carbon dioxide (CO2) emissions by 231,420.06 tons/year. The conclusion of this study is that CO2 emissions produced from fiber-brick production machines in 1 m3 are 0.00179 ton and CO2 emissions that can be reduced by utilizing palm oil midrib fiber as an additive to fiber-brick production by 231,420.06 tons/year. Keywords: CO2, emissions, oil palm, midribABSTRAKLimbah pelepah kelapa sawit selama ini masih belum dimanfaatkan, sehingga berpotensi menyumbangkan emisi CO2 ke udara. Luas perkebunan kelapa sawit yang ada di provinsi Riau tahun 2015 adalah 2.400.900 hektar dan pada tahun 2016 meningkat sebesar 2.430.500 hektar. Limbah pelepah kelapa sawit yang dihasilkan oleh 148 pohon per hektar adalah 3,108 ton/bulan atau 37,296 ton/tahun. Artinya, dengan luas perkebunan sawit 2.430.500 hektar, maka limbah yang dihasilkan sebesar 90.647.928 ton/tahun. Limbah tersebut dapat berpengaruh terhadap lingkungan. Apabila pelepah kelapa sawit yang telah dipotong lalu ditumpuk atau dibakar akan menyumbangkan emisi CO2 yang besar terhadap lingkungan. Salah satu upaya memanfaatkan limbah pelepah kelapa sawit adalah memakai seratnya sebagai bahan tambah dalam pembuatan batako. Tujuan penelitian ini untuk menghitung pengurangan emisi CO2 dengan dimanfaatkannya limbah pelepah kelapa sawit pada produksi batako-serat. Metode yang digunakan adalah metode deskriptif. Penelitian yang dilaksanakan bersifat kuantitatif dengan pendekatan eksperimental dan riset laboratorium. Temuan penelitian ini adalah bahwa pemanfaatan serat pelepah kelapa sawit yang dijadikan sebagai bahan tambah pada pembuatan batako-serat dapat mengurangi emisi karbon dioksida (CO2) sebesar 231.420,06 ton/tahun. Kesimpulan penelitian ini adalah bahwa emisi CO2 yang dihasilkan dari mesin produksi batako-serat dalam 1 m3 adalah 0,00179 ton/m3 dan emisi CO2 yang dapat dikurangi dengan memanfaatkan serat pelepah kelapa sawit sebagai bahan tambah pada produksi batako-serat sebesar 231.420,06 ton/tahun.Kata kunci: CO2, emisi, kelapa sawit, pelepah


2018 ◽  
Vol 1 (2) ◽  
pp. 204-208
Author(s):  
Vidyanova Anggun Mentari ◽  
Seri Maulina

Indonesia termasuk negara produsen kelapa sawit terbesar di dunia. Berdasarkan laporan Badan Pusat Statistik luas perkebunan kelapa sawit di Indonesia pada tahun 2016 sebesar 11.672.861 Ha. Limbah perkebunan kelapa sawit tersedia dalam jumlah yang banyak dan belum dimanfaatkan secara optimal salah satunya yaitu pelepah kelapa sawit. Pelepah kelapa sawit termasuk kategori limbah basah (wet by-products) dengan jumlah produksi pelepah kelapa sawit pada tahun 2016 yaitu sebesar 191.434.920 ton.Paper ini membahas perbandingan gugus fungsi dan morfologi permukaan karbon aktif dari pelepah kelapa sawit(elaeis guineensis Jacq) dengan aktivator H3PO4 dan HNO3.Penelitian ini bertujuan untuk mengetahui perbandingan gugus fungsi dan morfologi permukaan karbon aktif dari pelepah kelapa sawit dengan aktivator H3PO4 dan HNO3. Metode yang dilakukan meliputi proses impregnasi, karbonisasi, dan pencucian. Konsentrasi aktivator yang digunakan yaitu 20% dengan suhu aktivasi 400 oC. Analisa yang dilakukan pada penelitian ini meliputi analisis morfologi permukaan karbon aktif dengan menggunakan SEM dan analisis spektra secara FTIR terhadap karbon aktif. Hasilanalisa morfologi menggunakan SEM menunjukkan adanya pori yang terbentuk pada karbon aktif dan identifikasi dengan spektrofotometer FTIR menunjukkan bahwa karbon aktif pada penelitian ini mengandung gugus fungsi C=O, C=C, C-C, N=O, C-N, C-OH, CH2dan C-H Indonesia is the largest palm oil producer in the world. Based on the Central Statistics Agency's report, the area of ​​oil palm plantations in Indonesia in 2016 amounted to 11,672,851 Ha. Palm oil plantation waste is available in large quantities and has not been utilized optimally; one of which is palm tree fronds. Palm oil fronds are categorized as wet waste (wet by products) with the amount of palm oil fronds production in 2016 was equal to 191,434,920 tons. This paper discussed the comparison of functional groups and surface morphology of activated carbon from oil palm fronds (Elaeis guineensis Jacq) with H3PO4 and HNO3 activators. This study aimed to determine the comparison of functional groups and surface morphology of activated carbon from oil palm fronds with activators of H3PO4 and HNO3. The method used included the process of impregnation, carbonization, and washing. The concentration of activator used was 20% with an activation temperature of 400 oC. The analysis carried out in this study included the analysis of the surface morphology of activated carbon using SEM and FTIR spectra analysis of activated carbon. Morphological analysis using SEM showed the presence of pores formed on activated carbon. Identification with FTIR spectrophotometer showed that the activated carbon in this study contained functional groups C = O, C = C, CC, N = O, CN, C-OH, CH2 and CH.


2021 ◽  
Vol 11 (4) ◽  
pp. 3961-3974

Oil palm plantation has been widely planted in tropical countries, particularly Malaysia. Oil palm biomasses as by-products of palm oil production, therefore, exist abundantly. Four kilograms of dry biomasses are generated for every kilogram of palm oil produced. Empty fruit bunch is a major solid waste produced by palm oil mills, constituting 23% of the total weight of the fresh palm fruit bunch. As one of the largest palm oil producers, Malaysia generated a huge amount of EFB annually, making the country's disposal process a headache issue. Therefore, utilizing these wastes strategically could be beneficial from both economic and environmental points of view. Ideally, EFB could be used as feedstocks for bioenergy production, composites fabrication, activated carbon, and chemical synthesis. Apart from that, composting is also one of the potential approaches to solving this waste's abundance. Composting oil palm EFB means converting the EFB waste, which is essentially organic in nature, into humus suitable for crop production. The main purpose of composting is to handle organic wastes and enhance soil fertility safely. This paper gives an overview of the latest status and technologies dealing with composting of oil palm EFB, its limitations, current issues, and way forward.


2021 ◽  
Author(s):  
Ibrahim Al-Ani ◽  
◽  
Wan Hamidon ◽  
Wan Mohtar ◽  
Basma Alwachy ◽  
...  

Concrete is a major material used in the construction of buildings and structures in the world. Gravel and sand are the major ingredients of concrete but are non-renewable natural materials. Therefore, the utilisation of palm oil clinker (POC), a solid waste generated from palm oil industry is proposed to replace natural aggregate in this research to reduce the demand for natural aggregates. One mix of ordinary concrete as control concrete; while four mix proportions of oil palm clinker concrete were obtained by replacing 25 %, 50 %, 75 %, and 100 % of gravel and sand of control concrete with coarse and fine oil palm clinker respectively by volume, with same cement content and water cement ratio. Compressive strength test was carried out of concretes with different percentages of oil palm clinker; whereas water absorption test according to respective standard, were carried out to determine the durability properties of various mixes. Based on the results obtained, the study on the effect of percentage of clinker on strength and durability properties was drawn. According to ACI classification of light weight concrete only the 100 percentage replacement can achieve the definition of light weight concrete since its density less than 1900 kg/m3 and strength larger than 17 MPa. Eventually the 25 % replacement of the normal aggregate by the OPC will improve the strength and durability of the concrete.


2021 ◽  
Author(s):  
Joris Herz ◽  
Ana Meijide ◽  
Christian Stiegler ◽  
Bunyod Holmatov ◽  
Alexander Knohl ◽  
...  

<p>The global population growth and changes in human lifestyle and consumption patterns put immense pressure on the limited freshwater resources in the world. Aiming at sustainable use and equitable allocation of the water resources, it becomes crucial to know the water appropriation for the production of different commodities and consumer goods. These days, oil palm (<em>Elaeis guineensis</em>) is one of the highest-demanded crops around the globe since the oil of its fruits and kernel is widely used as biofuel and major ingredients in food and cosmetic industries. Given this massive demand, the areas under oil palm cultivation in the tropics have continuously been expanding in the last decades, particularly in Indonesia. With the oil palm boom, not only biodiversity loss, and carbon dioxide emissions from deforestation have been increasing, but also the consumptions of blue and green water resources are of concern. </p><p>In this ongoing research, the concept of water footprint (WF) is employed to quantify the green and blue water use of oil palm production in the Bajubang district, Batanghari regency, Jambi province, Sumatra, Indonesia. This is one of the first studies that uses field-measured data of evapotranspiration (ET) from oil palm plantations in different growth stages over seven years for the purpose of WF assessment, compared to the available literature where ET was estimated using modelling approaches. The multi-year measurements were conducted using the eddy covariance technique, which continuously measures water vapor (H<sub>2</sub>O) fluxes at the ecosystem level over the plantation. Based on these measurements, specifically, the WF assessment is performed on a product basis during the plantation life cycle, per area and time unit, for the oil palm fruit yield and oil palm derived products (palm oil, palm-oil biodiesel). Besides the crop water consumption at the plantation (i.e. ET) as the core element, other water consumptions in the products’ processing chain are included in the WF assessment. Preliminary results indicate a WF of 2440 m<sup>3</sup> t<sup>-1</sup> for palm oil and 65 m<sup>3</sup> GJ<sup>-1</sup> for palm-oil biodiesel. This is about 50% lower than the global average estimates. Local WF account of oil palm products has a critical contribution to product transparency while being useful for comparative purposes. Contrasting the WFs of products serving the same function (e.g., palm oil biodiesel, soybean biodiesel) is of essential importance, aiming at conscious product choices in a world of freshwater scarcity.</p><p>Keywords: water footprint, oil palm, palm oil, Indonesia, eddy covariance, evapotranspiration</p>


2020 ◽  
Vol 12 (12) ◽  
pp. 5077 ◽  
Author(s):  
Royston Uning ◽  
Mohd Talib Latif ◽  
Murnira Othman ◽  
Liew Juneng ◽  
Norfazrin Mohd Hanif ◽  
...  

Palm oil production is a key industry in tropical regions, driven by the demand for affordable vegetable oil. Palm oil production has been increasing by 9% every year, mostly due to expanding biofuel markets. However, the oil palm industry has been associated with key environmental issues, such as deforestation, peatland exploitation and biomass burning that release carbon dioxide (CO2) into the atmosphere, leading to climate change. This review therefore aims to discuss the characteristics of oil palm plantations and their impacts, especially CO2 emissions in the Southeast Asian region. The tropical climate and soil in Southeast Asian countries, such as Malaysia and Indonesia, are very suitable for growing oil palm trees. However, due to the scarcity of available plantation areas deforestation occurs, especially in peat swamp areas. Total carbon losses from both biomass and peat due to the conversion of tropical virgin peat swamp forest into oil palm plantations are estimated to be around 427.2 ± 90.7 t C ha−1 and 17.1 ± 3.6 t C ha−1 year−1, respectively. Even though measured CO2 fluxes have shown that overall, oil palm plantation CO2 emissions are about one to two times higher than other major crops, the ability of oil palms to absorb CO2 (a net of 64 tons of CO2 per hectare each year) and produce around 18 tons of oxygen per hectare per year is one of the main advantages of this crop. Since the oil palm industry plays a crucial role in the socio-economic development of Southeast Asian countries, sustainable and environmentally friendly practices would provide economic benefits while minimizing environmental impacts. A comprehensive review of all existing oil plantation procedures is needed to ensure that this high yielding crop has highly competitive environmental benefits.


2015 ◽  
Vol 786 ◽  
pp. 393-397
Author(s):  
Roejhan Md Kawi ◽  
Z.B. Razali ◽  
Muhammad Naufal Mansor ◽  
C.D.M. Asyraf

Farm workers in the Oil Palm industry in Malaysia are extremely exposed to the risk of musculoskeletal disorders (MSDs) which is directly affected to the production outputs. This paper is to discuss the way to reduce the MSDs biomechanical load by using a new design of ergonomic palm oil fruit harvesting device. According to the observation, manual harvesting process by using conventional device or device was highly risk to undergo MSDs due to repetitive awkward posture. Thus, new device is proposed for reducing the effect of MSDs. Electromyography (EMG) evaluation was conducted to determine the reliability and the efficiency of the proposed method to reduce the risk of MSDs. Results of EMG show that the using of the proposed device provides less pain compare to the conventional device.


2011 ◽  
Vol 367 ◽  
pp. 739-743
Author(s):  
C.O. Ilechie ◽  
A.O. Akii Ibhadode ◽  
B.O. Abikoye

The oil palm (elaeis guneensis) is a very important economic crop in West Africa where it is native. The fruit bunch contains 23 to 30% oil and is the highest yielding of all vegetable oil crops. Palm oil is the second most important vegetable oil in world consumption and the first to be commercialized internationally. Africa and indeed Nigerian was the world’s highest producer of palm oil prior to 1961. Today, Nigeria is the fourth largest producer after Indonesia, Malaysia and Thailand. One of the main reasons given for this fall is lack of efficient mechanized processing equipment for the small-scale producers who produce over 80% of the country’s palm oil. Their methods of production are labour intensive, batch, tedious, inefficient, and produce poor quality oil, have low throughput, unable to extract palm kernel alongside palm oil and so productivity is low and products (palm oil and palm kernel) lack competitiveness. This work has developed a mechanized oil palm fruit processing mill with six fully integrated systems for extracting good quality palm oil and palm kernel, while utilizing process wastes as the main source of heat energy. Each system/unit is expected to operate at the best quoted system efficiency. Tests are ongoing to determine and confirm these efficiencies.


2018 ◽  
Vol 2 (1) ◽  
pp. 15
Author(s):  
Muhammad Dedi Irawan ◽  
Muhammad Khairi Ikhsan Nasution

Abstract - PT. Perkebunan Nusantara IV Air Batu (PTPN IV) is a government-owned oil palm plantation that is engaged in the production of palm fruit, oil palm plants will grow well and produce optimally if the plant is protected from disease. However, there is an imbalance where every year palm oil needs increase, while oil palm production decreases. This is due to lack of understanding of plantation assistants on the types of diseases found in oil palm plants which can cause continuous damage to oil palm plants. The Bayes method is one method that is suitable for selection, because the Bayes method is a good method in machine learning based on training data using conditional probabilities as the basis. With this expert system it is expected that plantation assistants can find out the type of disease and its solution quickly so that the problem of decreasing oil palm production can be overcome. The results of the research in the form of an expert system diagnose the disease of oil palm plants using the Android-based bayes method thus, this application can be used to analyze diseases using cellular phones. Keywords - Palm Oil Disease, Expert Systems, Bayes Method, Android.


Sign in / Sign up

Export Citation Format

Share Document