scholarly journals Modeling the sensitivity of CERES-Rice model: An experience of Nepal

2013 ◽  
Vol 3 ◽  
pp. 11-22 ◽  
Author(s):  
A Lamsal ◽  
LP Amgai ◽  
A Giri

The experiment was conducted with four levels of nitrogen (40, 80,120 and 160 kg/ha) and 3 different cultivars (Prithivi hybrid), Masuli (HYV) and Sunaulo Sugandha (Aromatic).RMSE value (747.35 kg/ha, 1.106 days, 2.58 days and 0.004 kg/ha) and D-stat value (0.793, 0.99, 0.99 and 0.633) for grain yield, anthesis days, maturity days, and individual grain weight respectively. The objective of this study was to identify whether CSM-CERES-Rice model can be used in Nepalese condition and to evaluate the sensitivity of model with impact of climate change on rice production. Eight different climate scenarios were built by perturbing maximum and minimum temperature (± 4°C), CO2 (± 20ppm), solar radiation (±1MJ/m2/day) using interactive sensitivity analysis mode in DSSAT. Among the scenario evaluated, temperature (± 40°C), CO2 concentration (+20 ppm) with change in solar radiation (±1MJ m-2 day-1) resulted maximum increase in yield (by 62, 41 and 42%) under decreasing climatic scenarios and sharp decline in yield (by 80, 46 and 40%) was observed under increasing climate change scenarios, in Prithivi, Masuli and Sunaulo Sugandha cultivars respectively.Not surprisingly, increasing yield by (48, 25 and 27 %) and decrease in yield by(77, 41 and 34) by perturbing only maximum and minimum temperature by (± 4) shows that the temperature is most sensitive for yield potentiality of cultivars than other. CERES-Riceversion 4.0 was well calibrated in Chitwan Nepal condition. The model applications show that model could be a tool for precision decision-making. There was variation in yield in response to the change in climatic scenario in the study. RMSE value (747.4 kg/ha, 1.11days, and 2.58 days), and d-stat (0.79, 0.99 and 0.99) for grain yield, anthesis, and maturity days confirm the possibility of CERESRiceuse in Nepalese agriculture. The finding showed that there was sharp decrease in rice yield due to change in temperature, CO2 and solar radiation. Climatic scenario developed by CERES-Rice model in sensitivity analysis resulted yield reduction up to 80%. Among the cultivar, hybrid rice shows more vulnerability with climate change. Decrease in yield were mainly associated with lowering growth duration along with increasing temperature, where as there is very less counter effect of increasing carbon dioxide concentration and solar radiation. Agronomy Journal of Nepal (Agron JN) Vol. 3. 2013, Page 11-22 DOI: http://dx.doi.org/10.3126/ajn.v3i0.8982

2012 ◽  
Vol 92 (3) ◽  
pp. 421-425 ◽  
Author(s):  
Hong Wang ◽  
Yong He ◽  
Budong Qian ◽  
Brian McConkey ◽  
Herb Cutforth ◽  
...  

Wang, H., He, Y., Qian, B., McConkey, B., Cutforth, H., McCaig, T., McLeod, G., Zentner, R., DePauw, R., Lemke, R., Brandt, K., Liu, T., Qin, X., White, J., Hunt, T. and Hoogenboom, G. 2012. Short Communication: Climate change and biofuel wheat: A case study of southern Saskatchewan. Can. J. Plant Sci. 92: 421–425. This study assessed potential impacts of climate change on wheat production as a biofuel crop in southern Saskatchewan, Canada. The Decision Support System for Agrotechnology Transfer-Cropping System Model (DSSAT-CSM) was used to simulate biomass and grain yield under three climate change scenarios (CGCM3 with the forcing scenarios of IPCC SRES A1B, A2 and B1) in the 2050s. Synthetic 300-yr weather data were generated by the AAFC stochastic weather generator for the baseline period (1961–1990) and each scenario. Compared with the baseline, precipitation is projected to increase in every month under all three scenarios except in July and August and in June for A2, when it is projected to decrease. Annual mean air temperature is projected to increase by 3.2, 3.6 and 2.7°C for A1B, A2 and B1, respectively. The model predicted increases in biomass by 28, 12 and 16% without the direct effect of CO2 and 74, 55 and 41% with combined effects (climate and CO2) for A1B, A2 and B1, respectively. Similar increases were found for grain yield. However, the occurrence of heat shock (>32°C) will increase during grain filling under the projected climate conditions and could cause severe yield reduction, which was not simulated by DSSAT-CSM. This implies that the future yield under climate scenarios might have been overestimated by DSSAT-CSM; therefore, model modification is required. Several measures, such as early seeding, must be taken to avoid heat damages and take the advantage of projected increases in temperature and precipitation in the early season.


2021 ◽  
Vol 3 ◽  
Author(s):  
Meisam Nazari ◽  
Behnam Mirgol ◽  
Hamid Salehi

This is the first large-scale study to assess the climate change impact on the grain yield of rainfed wheat for three provinces of contrasting climatic conditions (temperate, cold semi-arid, and hot arid) in Iran. Five integrative climate change scenarios including +0.5°C temperature plus−5% precipitation, +1°C plus−10%, +1.5°C plus−15%, +2°C plus−20%, and +2.5°C plus−25% were used and evaluated. Nitrogen fertilizer and shifting planting dates were tested for their suitability as adaptive strategies for rainfed wheat against the changing climate. The climate change scenarios reduced the grain yield by −6.9 to −44.8% in the temperate province Mazandaran and by −7.3 to −54.4% in the hot arid province Khuzestan but increased it by +16.7% in the cold semi-arid province Eastern Azarbaijan. The additional application of +15, +30, +45, and +60 kg ha−1 nitrogen fertilizer as urea at sowing could not, in most cases, compensate for the grain yield reductions under the climate change scenarios. Instead, late planting dates in November, December, and January enhanced the grain yield by +6 to +70.6% in Mazandaran under all climate change scenarios and by +94 to +271% in Khuzestan under all climate change scenarios except under the scenario +2.5°C temperature plus−25% precipitation which led to a grain yield reduction of −85.5%. It is concluded that rainfed wheat production in regions with cold climates can benefit from the climate change, but it can be impaired in temperate regions and especially in vulnerable hot regions like Khuzestan. Shifting planting date can be regarded as an efficient yield-compensating and environmentally friendly adaptive strategy of rainfed wheat against the climate change in temperate and hot arid regions.


Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 689
Author(s):  
Yuksel Kaya

Climate change scenarios reveal that Turkey’s wheat production area is under the combined effects of heat and drought stresses. The adverse effects of climate change have just begun to be experienced in Turkey’s spring and the winter wheat zones. However, climate change is likely to affect the winter wheat zone more severely. Fortunately, there is a fast, repeatable, reliable and relatively affordable way to predict climate change effects on winter wheat (e.g., testing winter wheat in the spring wheat zone). For this purpose, 36 wheat genotypes in total, consisting of 14 spring and 22 winter types, were tested under the field conditions of the Southeastern Anatolia Region, a representative of the spring wheat zone of Turkey, during the two cropping seasons (2017–2018 and 2019–2020). Simultaneous heat (>30 °C) and drought (<40 mm) stresses occurring in May and June during both growing seasons caused drastic losses in winter wheat grain yield and its components. Declines in plant characteristics of winter wheat genotypes, compared to those of spring wheat genotypes using as a control treatment, were determined as follows: 46.3% in grain yield, 23.7% in harvest index, 30.5% in grains per spike and 19.4% in thousand kernel weight, whereas an increase of 282.2% in spike sterility occurred. On the other hand, no substantial changes were observed in plant height (10 cm longer than that of spring wheat) and on days to heading (25 days more than that of spring wheat) of winter wheat genotypes. In general, taller winter wheat genotypes tended to lodge. Meanwhile, it became impossible to avoid the combined effects of heat and drought stresses during anthesis and grain filling periods because the time to heading of winter wheat genotypes could not be shortened significantly. In conclusion, our research findings showed that many winter wheat genotypes would not successfully adapt to climate change. It was determined that specific plant characteristics such as vernalization requirement, photoperiod sensitivity, long phenological duration (lack of earliness per se) and vulnerability to diseases prevailing in the spring wheat zone, made winter wheat difficult to adapt to climate change. The most important strategic step that can be taken to overcome these challenges is that Turkey’s wheat breeding program objectives should be harmonized with the climate change scenarios.


2018 ◽  
Vol 50 (1) ◽  
pp. 24-42 ◽  
Author(s):  
Lei Chen ◽  
Jianxia Chang ◽  
Yimin Wang ◽  
Yuelu Zhu

Abstract An accurate grasp of the influence of precipitation and temperature changes on the variation in both the magnitude and temporal patterns of runoff is crucial to the prevention of floods and droughts. However, there is a general lack of understanding of the ways in which runoff sensitivities to precipitation and temperature changes are associated with the CMIP5 scenarios. This paper investigates the hydrological response to future climate change under CMIP5 RCP scenarios by using the Variable Infiltration Capacity (VIC) model and then quantitatively assesses runoff sensitivities to precipitation and temperature changes under different scenarios by using a set of simulations with the control variable method. The source region of the Yellow River (SRYR) is an ideal area to study this problem. The results demonstrated that the precipitation effect was the dominant element influencing runoff change (the degree of influence approaching 23%), followed by maximum temperature (approaching 12%). The weakest element was minimum temperature (approaching 3%), despite the fact that the increases in minimum temperature were higher than the increases in maximum temperature. The results also indicated that the degree of runoff sensitivity to precipitation and temperature changes was subject to changing external climatic conditions.


Author(s):  
Y. K. Xiao ◽  
Z. M. Ji ◽  
C. S. Fu ◽  
W. T. Du ◽  
J. H. Yang ◽  
...  

Abstract. We projected incident surface solar radiation (SSR) over China in the middle (2040–2059) and end (2080–2099) of the 21st century in the Representative Concentration Pathway (RCP) 8.5 scenario using a multi-model ensemble derived from the weighted average of seven global climate models (GCMs). The multi-model ensemble captured the contemporary (1979–2005) spatial and temporal characteristics of SSR and reproduced the long-term temporal evolution of the mean annual SSR in China. However, it tended to overestimate values compared to observations due to the absence of aerosol effects in the simulations. The future changes in SSR showed increases over eastern and southern China, and decreases over the Tibetan Plateau (TP) and northwest China relative to the present day. At the end of the 21st century, there were SSR increases of 9–21 W m−2 over northwest, central, and south China, and decreases of 18–30 W m−2 over the TP in June–July–August (JJA). In northeast China, SSR showed seasonal variation with increases in JJA and decreases in December–January–February. The time series of annual SSR had a decreased linear trend for the TP, and a slightly increased trend for China during 2006–2099. The results of our study suggest that solar energy resources will likely decrease in the TP under future climate change scenarios.


2019 ◽  
Vol 20 (6) ◽  
pp. 1197-1211 ◽  
Author(s):  
Rakesh K. Gelda ◽  
Rajith Mukundan ◽  
Emmet M. Owens ◽  
John T. Abatzoglou

Abstract Climate model output is often downscaled to grids of moderately high spatial resolution (~4–6-km grid cells). Such projections have been used in numerous hydrological impact assessment studies at watershed scales. However, relatively few studies have been conducted to assess the impact of climate change on the hydrodynamics and water quality in lakes and reservoirs. A potential barrier to such assessments is the need for meteorological variables at subdaily time scales that are downscaled to in situ observations to which lake and reservoir water quality models have been calibrated and validated. In this study, we describe a generalizable procedure that utilizes gridded downscaled data; applies a secondary bias-correction procedure using equidistance quantile mapping to map projections to station-based observations; and implements temporal disaggregation models to generate point-scale hourly air and dewpoint temperature, wind speed, and solar radiation for use in water quality models. The proposed approach is demonstrated for six locations within New York State: four within watersheds of the New York City water supply system and two at nearby National Weather Service stations. Disaggregation models developed using observations reproduced hourly data well at all locations, with Nash–Sutcliffe efficiency greater than 0.9 for air temperature and dewpoint, 0.4–0.6 for wind speed, and 0.7–0.9 for solar radiation.


Plants ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 518 ◽  
Author(s):  
Nelimor ◽  
Badu-Apraku ◽  
Tetteh ◽  
N’guetta

Climate change is expected to aggravate the effects of drought, heat and combined drought and heat stresses. An important step in developing ‘climate smart’ maize varieties is to identify germplasm with good levels of tolerance to the abiotic stresses. The primary objective of this study was to identify landraces with combined high yield potential and desirable secondary traits under drought, heat and combined drought and heat stresses. Thirty-three landraces from Burkina Faso (6), Ghana (6) and Togo (21), and three drought-tolerant populations/varieties from the Maize Improvement Program at the International Institute of Tropical Agriculture were evaluated under three conditions, namely managed drought stress, heat stress and combined drought and heat stress, with optimal growing conditions as control, for two years. The phenotypic and genetic correlations between grain yield of the different treatments were very weak, suggesting the presence of independent genetic control of yield to these stresses. However, grain yield under heat and combined drought and heat stresses were highly and positively correlated, indicating that heat-tolerant genotypes would most likely tolerate combined drought and stress. Yield reduction averaged 46% under managed drought stress, 55% under heat stress, and 66% under combined drought and heat stress, which reflected hypo-additive effect of drought and heat stress on grain yield of the maize accessions. Accession GH-3505 was highly tolerant to drought, while GH-4859 and TZm-1353 were tolerant to the three stresses. These landrace accessions can be invaluable sources of genes/alleles for breeding for adaptation of maize to climate change.


2020 ◽  
Vol 15 (1) ◽  
pp. 106-122
Author(s):  
J. Alam ◽  
R. K. Panda

 Any change in climate will have implications for climate-sensitive systems such as agriculture, forestry and some other natural resources. Changes in solar radiation, temperature and precipitation will produce changes in crop yields and hence economics of agriculture. It is possible to understand the phenomenon of climate change on crop production and to develop adaptation strategies for sustainability in food production, using a suitable crop simulation model. CERES-Maize model of DSSAT v4.0 was used to simulate the maize yield of the region under climate change scenarios using the historical weather data at Kharagpur (1977-2007), Damdam (1974-2003) and Purulia (1986-2000), West Bengal, India. The model was calibrated using the crop experimental data, climate data and soil data for two years (1996-1997) and was validated by using the data of the year 1998 at Kharagpur. The change in values of weather parameters due to climate change and its effects on the maize crop growth and yield was studied. It was observed that increase in mean temperature and leaf area index have negative impacts on maize yield. When the maximum leaf area index increased, the grain yield was found to be decreased. Increase in CO2 concentration with each degree incremental temperature decreased the grain yield but increase in CO2 concentration with fixed temperature increased the maize yield. Adjustments were made in the date of sowing to investigate suitable option for adaptation under the future climate change scenarios. Highest yield was obtained when the sowing date was advanced by a week at Kharagpur and Damdam whereas for Purulia, the experimental date of sowing was found to be beneficial.


2017 ◽  
Vol 79 (7) ◽  
Author(s):  
Nor Farah Atiqah Ahmad ◽  
Muhamad Askari ◽  
Sobri Harun ◽  
Abu Bakar Fadhil ◽  
Amat Sairin Demun

Sensitivity of the FAO Penman-Monteith (FPM) potential evapotranspiration (PET) model under tropical climates has been studied in the present study. A total of 17 meteorological stations covering Peninsular Malaysia starting from 1987-2003 were used as model inputs. A sensitivity analysis (SA) was carried out using the graphical method for temperature, wind speed and solar radiation within the possible range of ±20% with increments of 5%. From the comparison done on the sensitivity of PET to climatic change, the Kuala Krai station gave the highest percentage change in terms of temperature (±6%). The highest percentage change for wind speed (±2%) and solar radiation (±17%) were shown at the Alor Setar and Kuala Krai stations, respectively. The Alor Setar station had the lowest percentage change for temperature (±0.3%) and solar radiation (±9.9). The lowest percentage change of wind speed (± 0.2%) was observed at the Kuala Krai station. PET percentage changes have a positive correlation to the percentage change of all climatic variables except for the Cameron Highlands station. Results revealed that solar radiation has the most significant effect on PET (±14%), followed by temperature (±4%) and wind speed (±1%). Taken together, these results suggest that solar radiation plays an important role in estimating PET in Peninsular Malaysia.


1970 ◽  
Vol 8 (3) ◽  
pp. 147-167 ◽  
Author(s):  
Yam K Rai ◽  
Bhakta B Ale ◽  
Jawed Alam

Climate change and global warming are burning issues, which significantly threat agriculture and global food security. Change in solar radiation, temperature and precipitation will influence the change in crop yields and hence economy of agriculture. It is possible to understand the phenomenon of climate change on crop production and to develop adaptation strategies for sustainability in food production, using a suitable crop simulation model. CERES-Rice model of DSSAT v4.0 was used to simulate the rice yield of the region under climate change scenarios using the historical weather data at Nepal Agriculture Research Council (NARC) Tarahara (1989-2008). The Crop Model was calibrated using the experimental crop data, climate data and soil data for two years (2000-2001) and was validated by using the data of the year 2002 at NARC Tarahara. In this study various scenarios were undertaken to analyze the rice yield. The change in values of weather parameters due to climate change and its effects on the rice yield were studied. It was observed that increase in maximum temperature up to 2°C and 1°C in minimum temperature have positive impact on rice yield but beyond that temperature it was observed negative impact in both cases of paddy production in ambient temperature. Similarly, it was observed that increased in mean temperature, have negative impacts on rice yield. The impact of solar radiation in rice yield was observed positive during the time of study period. Adjustments were made in the fertilizer rate, plant density per square meter, planting date and application of water rate to investigate suitable agronomic options for adaptation under the future climate change scenarios. Highest yield was obtained when the water application was increased up to 3 mm depth and nitrogen application rate was 140 kg/ha respectively. DOI: http://dx.doi.org/10.3126/jie.v8i3.5941 JIE 2011; 8(3): 147-167


Sign in / Sign up

Export Citation Format

Share Document