Mushroom: a potent source of natural antiviral drugs

2020 ◽  
Vol 1 (1) ◽  
pp. 81-91
Author(s):  
Jay Kant Raut

Emerging viral infections such as the zika virus, dengue virus, ebola virus, corona virus are afflicting millions of human populations worldwide. Therefore, the development of new treatments against emerging infectious diseases has become an urgent task. The availability of commercially viable, safe, and effective antiviral drugs still remains a big challenge. Mushrooms are considered as an untapped reservoir of several novel compounds of great value in industry and medicine. Although exploration, and exploitation of the therapeutic importance of fungal metabolites has started early with the discovery of penicillin, mushrooms’s pharmacological potential has much less been investigated. This article briefly reviews the antiviral potentials of mushrooms to combat deadly disease outbreaks caused by emerging and re-emerging viruses. Altogether 69 mushroom species with potent antiviral agents and mode of action against prominent viruses such as human immunodeficiency virus, influenza, herpes simplex virus, hepatitis B and C viruses, corona viruses etc. are listed in this study. Further studies are encouraged to discover more novel potent antiviral agents or evaluate already known compounds from those mushrooms with clinical trials.

2019 ◽  
Author(s):  
Patrick Duff

A number of viral etiologies contribute to morbidity and mortality in pregnancy and the perinatal period. Here we discuss some of the major viral infections that occur in pregnancy. This review focuses on infections of cytomegalovirus (CMV), viral hepatitis, herpes simplex virus (HSV), and human immunodeficiency virus (HIV); other viral etiologies are discussed in part 2 of this topic. It is imperative to understand the risks, clinical course, diagnostic methodology, and management of these illnesses. This review contains 1 figure, 8 tables, and 67 references. Keywords: viral infection, pregnancy, prenatal, perinatal, cytomegalovirus, Ebola virus, viral hepatitis, herpes simplex virus, HIV, management


2008 ◽  
Vol 89 (1) ◽  
pp. 188-194 ◽  
Author(s):  
Yutaka Orihara ◽  
Hiroshi Hamamoto ◽  
Hiroshi Kasuga ◽  
Toru Shimada ◽  
Yasushi Kawaguchi ◽  
...  

Ganciclovir, foscarnet, vidarabine and ribavirin, which are used to treat viral infections in humans, inhibited the proliferation of a baculovirus (Bombyx mori nucleopolyhedrovirus) in BmN4 cells, a cultured silkworm cell line. These antiviral agents inhibited the proliferation of baculovirus in silkworm body fluid and had therapeutic effects. Using the silkworm infection model, the antiviral activity of Kampo medicines was screened and it was found that cinnamon bark, a component of the traditional Japanese medicine Mao-to, had a therapeutic effect. Based on the therapeutic activity, the antiviral substance was purified. Nuclear magnetic resonance analysis of the purified fraction revealed that the antiviral activity was due to cinnzeylanine, which has previously been isolated from Cinnamomum zeylanicum. Cinnzeylanine inhibits the proliferation of herpes simplex virus type 1 in Vero cells. These results suggest that the silkworm–baculovirus infection model is useful for screening antiviral agents that are effective for treating humans infected with DNA viruses.


Viruses ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 940 ◽  
Author(s):  
Seth D. Judson ◽  
Vincent J. Munster

Recent nosocomial transmission events of emerging and re-emerging viruses, including Ebola virus, Middle East respiratory syndrome coronavirus, Nipah virus, and Crimean–Congo hemorrhagic fever orthonairovirus, have highlighted the risk of nosocomial transmission of emerging viruses in health-care settings. In particular, concerns and precautions have increased regarding the use of aerosol-generating medical procedures when treating patients with such viral infections. In spite of increasing associations between aerosol-generating medical procedures and the nosocomial transmission of viruses, we still have a poor understanding of the risks of specific procedures and viruses. In order to identify which aerosol-generating medical procedures and emerging viruses pose a high risk to health-care workers, we explore the mechanisms of aerosol-generating medical procedures, as well as the transmission pathways and characteristics of highly pathogenic viruses associated with nosocomial transmission. We then propose how research, both in clinical and experimental settings, could advance current infection control guidelines.


Nanomaterials ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1645 ◽  
Author(s):  
Sangiliyandi Gurunathan ◽  
Muhammad Qasim ◽  
Youngsok Choi ◽  
Jeong Tae Do ◽  
Chankyu Park ◽  
...  

Infectious diseases account for more than 20% of global mortality and viruses are responsible for about one-third of these deaths. Highly infectious viral diseases such as severe acute respiratory (SARS), Middle East respiratory syndrome (MERS) and coronavirus disease (COVID-19) are emerging more frequently and their worldwide spread poses a serious threat to human health and the global economy. The current COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). As of 27 July 2020, SARS-CoV-2 has infected over 16 million people and led to the death of more than 652,434 individuals as on 27 July 2020 while also causing significant economic losses. To date, there are no vaccines or specific antiviral drugs to prevent or treat COVID-19. Hence, it is necessary to accelerate the development of antiviral drugs and vaccines to help mitigate this pandemic. Non-Conventional antiviral agents must also be considered and exploited. In this regard, nanoparticles can be used as antiviral agents for the treatment of various viral infections. The use of nanoparticles provides an interesting opportunity for the development of novel antiviral therapies with a low probability of developing drug resistance compared to conventional chemical-based antiviral therapies. In this review, we first discuss viral mechanisms of entry into host cells and then we detail the major and important types of nanomaterials that could be used as antiviral agents. These nanomaterials include silver, gold, quantum dots, organic nanoparticles, liposomes, dendrimers and polymers. Further, we consider antiviral mechanisms, the effects of nanoparticles on coronaviruses and therapeutic approaches of nanoparticles. Finally, we provide our perspective on the future of nanoparticles in the fight against viral infections.


Author(s):  
Farah Wasim Aribi Al-Zoobaee ◽  
Loo Yee Shen ◽  
Sajesh K. Veettil ◽  
Divya Gopinath ◽  
Mari Kannan Maharajan ◽  
...  

Cancer therapy may be complicated and compromised by viral infections, including oral herpes simplex virus (HSV) infection. This network meta-analysis aimed to identify the best antiviral agent to prevent or treat oral HSV infection in patients being treated for cancer. A search was conducted for trials published since inception until the 10th of May 2020 in MEDLINE, EMBASE and the Cochrane Central Register of Controlled Trials. A network meta-analysis was performed on the data from randomized controlled trials that assessed antiviral agents for preventive or therapeutic activity vs. placebo, no treatment or any other active intervention in patients being treated for cancer. The agents were ranked according to their effectiveness in the prevention of oral HSV using surface under the cumulative ranking (SUCRA). Grading of Recommendations, Assessment, Development and Evaluations (GRADE) was used to assess the certainty of the evidence. In total, 16 articles were included. The pooled relative risk (RR) to develop oral HSV infection in the acyclovir group was 0.17 (95% CI: 0.10, 0.30), compared to 0.22 (95% CI: 0.06, 0.77) in the valacyclovir group. Acyclovir ranked highest for the prevention of oral HSV followed by valacyclovir. Subgroup analysis with different acyclovir regimens revealed that the best regimens in terms of HSV-1 prevention were 750 mg/m2 acyclovir administered intravenously followed by 1600 mg per day orally. Acyclovir (250 mg/m2 per day) administered intravenously was the least effective against the prevention of oral HSV.


2017 ◽  
Vol 7 (3) ◽  
pp. 224-232
Author(s):  
Jamal Uddin Ahmed ◽  
Muhammad Abdur Rahim ◽  
Khwaja Nazim Uddin

Human life is intricately related to it’s surrounding environment which also harbors other animals and some deadly infectious pathogens. Any threat to the environment can thus increase the threat of new and so-called ‘emerging infectious diseases’ (EIDs) especially novel viral infections called ‘emerging viral diseases’. This occurs partly due to changing climate as well as human interference with nature and animal life. An important event in new disease emergence is genetic changes in the pathogen that make it possible to become established in a new host species, productively infect new individuals in the new hosts (typically humans) and create local, regional or worldwide health threats. The world has witnessed some emerging and deadly viral threats in recent past with huge mortality and morbidity. Among them were severe acute respiratory syndrome (SARS), bird flu, swine flu, Middle East respiratory syndrome (MERS), ebola virus disease. Moreover some disease has caused great concern in certain regions including Bangladesh in terms of morbidity, like Nipah virus, Zika virus, Dengue and Chikungunya fever. Here in this article an attempt was made to briefly describe some of these emerging viral infections.Birdem Med J 2017; 7(3): 224-232


2017 ◽  
Vol 372 (1721) ◽  
pp. 20160294 ◽  
Author(s):  
Amanda M. Rojek ◽  
Peter W. Horby

Although, after an epidemic of over 28 000 cases, there are still no licensed treatments for Ebola virus disease (EVD), significant progress was made during the West Africa outbreak. The pace of pre-clinical development was exceptional and a number of therapeutic clinical trials were conducted in the face of considerable challenges. Given the on-going risk of emerging infectious disease outbreaks in an era of unprecedented population density, international travel and human impact on the environment it is pertinent to focus on improving the research and development landscape for treatments of emerging and epidemic-prone infections. This is especially the case since there are no licensed therapeutics for some of the diseases considered by the World Health Organization as most likely to cause severe outbreaks—including Middle East respiratory syndrome coronavirus, Marburg virus, Crimean Congo haemorrhagic fever and Nipah virus. EVD, therefore, provides a timely exemplar to discuss the barriers, enablers and incentives needed to find effective treatments in advance of health emergencies caused by emerging infectious diseases. This article is part of the themed issue ‘The 2013–2016 West African Ebola epidemic: data, decision-making and disease control’.


2018 ◽  
Author(s):  
Zachary A. Bornholdt ◽  
Andrew S. Herbert ◽  
Chad E. Mire ◽  
Shihua He ◽  
Robert W. Cross ◽  
...  

All available experimental vaccines and immunotherapeutics1,2 against Ebola virus (EBOV), including rVSV-ZEBOV3 and ZMappTM4, lack activity against other ebolaviruses associated with human disease outbreaks. This year, two separate outbreaks of EBOV in the Democratic Republic of Congo underscored the unpredictable nature of ebolavirus reemergence in a region that has historically experienced outbreaks of the divergent ebolaviruses Sudan virus (SUDV) and Bundibugyo virus (BDBV)5. Here we show that MBP134AF, a pan-ebolavirus therapeutic comprising two broadly neutralizing human antibodies (bNAbs)6,7(see companion manuscript, Wec et al.) could protect against lethal EBOV, SUDV, and BDBV infection in ferrets and nonhuman primates (NHPs). MBP134AF not only not only establishes a viable therapeutic countermeasure to outbreaks caused by antigenically diverse ebolaviruses but also affords unprecedented effectiveness and potency—a single 25-mg/kg dose was fully protective in NHPs. This best-in-class antibody cocktail is the culmination of an intensive collaboration spanning academia, industry and government in response to the 2013-2016 EBOV epidemic6,7 and provides a translational research model for the rapid development of immunotherapeutics targeting emerging infectious diseases.


2020 ◽  
Vol 8 (1) ◽  
pp. 85 ◽  
Author(s):  
Sarah D’Alessandro ◽  
Diletta Scaccabarozzi ◽  
Lucia Signorini ◽  
Federica Perego ◽  
Denise P. Ilboudo ◽  
...  

In recent decades, drugs used to treat malaria infection have been shown to be beneficial for many other diseases, including viral infections. In particular, they have received special attention due to the lack of effective antiviral drugs against new emerging viruses (i.e., HIV, dengue virus, chikungunya virus, Ebola virus, etc.) or against classic infections due to drug-resistant viral strains (i.e., human cytomegalovirus). Here, we reviewed the in vitro/in vivo and clinical studies conducted to evaluate the antiviral activities of four classes of antimalarial drugs: Artemisinin derivatives, aryl-aminoalcohols, aminoquinolines, and antimicrobial drugs.


Sign in / Sign up

Export Citation Format

Share Document