Features of creating expression vectors in pBAtC for editing the potato ADH1 locus and the Arabidopsis DYAD gene

Biomics ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 510-519
Author(s):  
Rozhnova N.A. ◽  
Gerashchenkov K.G. ◽  
Elkonin L.A. ◽  
Gerashchenkov G.A.

Genome-editing strategies have recently emerged as promising tools to impart desired properties to many eukaryotic species, including plants. This technology can CRISPR/Cas9 be used to engineer plant resistance to narrow or wide range of pathogens, reproductive developmental features and other plant properties. It is known that EDS1 arabidopsis protein controls protection activation and programmable cell death due to intercellular Toll-like immune receptors that recognize specific pathogen effectors. Unfortunately, the involvement of EDS1 protein in the antiphytoviral immunity of potato plants has not been studied. Meiosis has a special place in the system of sexual and seeds-without-sex reproduction. Key meiosis genes, and above all the DYAD/ SWI1 gene, are a potential candidate in the search for apomixis genes. Binary vectors were obtained on the basis of plasmid pBAtC by the restriction-ligase method. Thus, three expression vectors (p01, p03 and p04) were created for editing the locus EDS1. Two expression vectors (pII-25 and pVIII-29) were created to introduce mutations in the second and eighth exons of the DYAD/ SWI1 arabidopsis gene. In all cases, the presence of cloned inserts was confirmed by DNA sequencing. The created p01, p03, p04 vectors under the pAtU6-6 arabidopsis promoter and the previously obtained p13 vector under the potato pStU6 promoter are already used in the work on bioballistic transformation of potato plants in vitro.

Author(s):  
Karl Schreiber ◽  
Jennifer D Lewis

Phytopathogens use secreted effector proteins to suppress host immunity and promote pathogen virulence, and there is increasing evidence that the host-pathogen interactome comprises a complex network. In an effort to identify novel interactors of the Pseudomonas syringae effector HopZ1a, we performed a yeast two-hybrid screen that identified a previously uncharacterized Arabidopsis protein that we designate HopZ1a Interactor 1 (ZIN1). Additional analyses in yeast and in planta revealed that ZIN1 also interacts with several other P. syringae effectors. We show that an Arabidopsis loss-of-function zin1 mutant is less susceptible to infection by certain strains of P. syringae, while overexpression of ZIN1 results in enhanced susceptibility. Functionally, ZIN1 exhibits topoisomerase-like activity in vitro. Transcriptional profiling of wild-type and zin1 Arabidopsis plants inoculated with P. syringae indicated that while ZIN1 regulates a wide range of pathogen-responsive biological processes, the list of genes more highly expressed in zin1 versus wild-type plants was particularly enriched for ribosomal protein genes. Altogether, these data illuminate ZIN1 as a potential susceptibility hub that interacts with multiple effectors to influence the outcome of plant-microbe interactions.


1991 ◽  
Vol 30 (01) ◽  
pp. 35-39 ◽  
Author(s):  
H. S. Durak ◽  
M. Kitapgi ◽  
B. E. Caner ◽  
R. Senekowitsch ◽  
M. T. Ercan

Vitamin K4 was labelled with 99mTc with an efficiency higher than 97%. The compound was stable up to 24 h at room temperature, and its biodistribution in NMRI mice indicated its in vivo stability. Blood radioactivity levels were high over a wide range. 10% of the injected activity remained in blood after 24 h. Excretion was mostly via kidneys. Only the liver and kidneys concentrated appreciable amounts of radioactivity. Testis/soft tissue ratios were 1.4 and 1.57 at 6 and 24 h, respectively. Testis/blood ratios were lower than 1. In vitro studies with mouse blood indicated that 33.9 ±9.6% of the radioactivity was associated with RBCs; it was washed out almost completely with saline. Protein binding was 28.7 ±6.3% as determined by TCA precipitation. Blood clearance of 99mTc-l<4 in normal subjects showed a slow decrease of radioactivity, reaching a plateau after 16 h at 20% of the injected activity. In scintigraphic images in men the testes could be well visualized. The right/left testis ratio was 1.08 ±0.13. Testis/soft tissue and testis/blood activity ratios were highest at 3 h. These ratios were higher than those obtained with pertechnetate at 20 min post injection.99mTc-l<4 appears to be a promising radiopharmaceutical for the scintigraphic visualization of testes.


1997 ◽  
Vol 77 (04) ◽  
pp. 725-729 ◽  
Author(s):  
Mario Colucci ◽  
Silvia Scopece ◽  
Antonio V Gelato ◽  
Donato Dimonte ◽  
Nicola Semeraro

SummaryUsing an in vitro model of clot lysis, the individual response to a pharmacological concentration of recombinant tissue plasminogen activator (rt-PA) and the influence on this response of the physiological variations of blood parameters known to interfere with the fibrinolytic/thrombolytic process were investigated in 103 healthy donors. 125I-fibrin labelled blood clots were submersed in autologous plasma, supplemented with 500 ng/ml of rt-PA or solvent, and the degree of lysis was determined after 3 h of incubation at 37° C. Baseline plasma levels of t-PA, plasminogen activator inhibitor 1 (PAI-1), plasminogen, α2-anti-plasmin, fibrinogen, lipoprotein (a), thrombomodulin and von Willebrand factor as well as platelet and leukocyte count and clot retraction were also determined in each donor. rt-PA-induced clot lysis varied over a wide range (28-75%) and was significantly related to endogenous t-PA, PAI-1, plasminogen (p <0.001) and age (p <0.01). Multivariate analysis indicated that both PAI-1 antigen and plasminogen independently predicted low response to rt-PA. Surprisingly, however, not only PAI-1 but also plasminogen was negatively correlated with rt-PA-ginduced clot lysis. The observation that neutralization of PAI-1 by specific antibodies, both in plasma and within the clot, did not potentiate clot lysis indicates that the inhibitor, including the platelet-derived form, is insufficient to attenuate the thrombolytic activity of a pharmacological concentration of rt-PA and that its elevation, similarly to the elevation of plasminogen, is not the cause of clot resistance but rather a coincident finding. It is concluded that the in vitro response of blood clots to rt-PA is poorly influenced by the physiological variations of the examined parameters and that factors other than those evaluated in this study interfere with clot dissolution by rt-PA. In vitro clot lysis test might help to identify patients who may be resistant to thrombolytic therapy.


2019 ◽  
Vol 9 (2) ◽  
pp. 91
Author(s):  
Ghea Dotulong ◽  
Stella Umboh ◽  
Johanis Pelealu

Uji Toksisitas Beberapa Fungisida Nabati terhadap Penyakit Layu Fusarium (Fusarium oxysporum) pada Tanaman Kentang (Solanum tuberosum L.) secara In Vitro (Toxicity Test of several Biofungicides in controlling Fusarium wilt (Fusarium oxysporum) in Potato Plants (Solanum tuberosum L.) by In Vitro) Ghea Dotulong1*), Stella Umboh1), Johanis Pelealu1), 1) Program Studi Biologi, FMIPA Universitas Sam Ratulangi, Manado 95115*Email korespondensi: [email protected] Diterima 9 Juli 2019, diterima untuk dipublikasi 10 Agustus 2019 Abstrak Tanaman kentang (Solanum tuberosum L.) adalah salah satu tanaman hortikultura yang sering mengalami penurunan dari segi produksi dan produktivitasnya, akibat adanya serangan penyakit layu yang salah satunya disebabkan oleh Fusarium oxysporum. Tujuan penelitian ini adalah mengidentifikasi toksisitas beberapa fungisida nabati dalam mengendalikan penyakit Layu Fusarium (F. oxysporum) pada tanaman kentang (Solanum tuberosum L.) secara In Vitro. Metode Penelitian yang digunakan yaitu metode umpan beracun. Data dianalisis dengan Rancangan Acak Lengkap (RAL) dengan Analisis Varian (ANAVA) yang dilanjutkan dengan menggunakan metode BNT (Beda Nyata Terkecil). Hasil Penelitian, diperoleh nilai toksisitas fungisida nabati tertinggi yaitu pada ekstrak daun sirsak dengan nilai HR (69,44%), kategori berpengaruh, ditandai dengan diameter koloni 2,75 cm (100ppm) dan yang terendah toksisitasnya yaitu pada ekstrak daun jeruk purut dengan nilai HR (49,81%), kategori cukup berpengaruh ditandai dengan diameter koloni 3,75 cm (25ppm). Semakin tinggi konsentrasi yang diujikan maka semakin tinggi toksisitas dari fungisida nabati yang diberikan.Kata Kunci: fungisida nabati, Fusarium oxysporum, tanaman kentang, In Vitro Abstract Potato plants (Solanum tuberosum L.) is one of the horticulture plants which often decreases in terms of production and productivity, due to the attack of wilt, one of which is caused by Fusarium oxysporum. The purpose of this study was to determine the toxicity of several biofungicides in controlling Fusarium wilt (F. oxysporum) in potato plants (Solanum tuberosum L.) in Vitro. The research method used was the In Vitro method with the poison bait method. Data were analyzed by Completely Randomized Design with Variant Analysis (ANAVA), followed by the BNT method. The results showed that the highest biofungicide toxicity value was soursop leaf extract with HR values (69.44%), influential categories, characterized by colony diameter 2.75 cm (100ppm) and the lowest toxicity, namely in kaffir lime leaf extract with a value of HR (49.81%), quite influential category was characterized by colony diameter of 3.75 cm (25ppm). The higher the concentration tested, the higher the toxicity of the biofungicide given.Keywords: biofungicides, Fusarium oxysporum, Potato Plants, In Vitro.


Growth regulators, phytohormones, both natural and artificial, are the main means to control plant ontogenesis. They are involved in regulating the processes of cell differentiation and cell divisions, the formation of tissues and organs, the changes in the rate of growth and development, the duration of the certain stages of ontogenesis. The main classes of phytohormones used in plant biotechnology, in particular, in the induction of haploid structures, are auxins and cytokinins. The mechanism of action of phytohormones on a cell is rather complicated and may have a different character. Understanding the characteristics of the action of phytohormones is complicated by the fact that the system of hormonal regulation of plant life is multicomponent. This is manifested in the fact that the same physiological process is most often influenced not by one, but by several phytohormones, covering a wide range of aspects of cell metabolism. In connection with the foregoing, the purpose of our work was to test a set of nutrient media with different basic composition and different proportions of phytohormones to determine the patterns of their influence on the processes of haploid structure induction in rape anther culture using accessions, developed at the Institute of Oilseed Crops NAAS. The material used was two accessions of winter rapeseed (No. 1 and No. 2) and one sample of spring rapeseed, provided by the Rapeseed Breeding laboratory of the Institute of Oilseed Crops. Incised inflorescences were kept against the background of low temperature of 6–8 ° C for several days, and then, under aseptic conditions, anthers with unripe pollen grains were isolated and planted on nutrient media differing in both basic mineral composition and content of phytohormones. MS (Murashige & Skoog 1962) and B5 (Gamborg et al 1968) media were used as basic media. Phytohormones were added to the basic media in various combinations – BA, 2,4-D, NAA at the concentrations of 0.1-0.6 mg/l. In each treatment up to 300 anthers were cultivated. Differences between treatments were evaluated using standard t-test. Studies have shown that in the anther culture of rapeseed on the tested nutrient media, morphogenic structures of different types (embryoids and callus) were originated. Synthetic auxin 2,4-D, regardless of the composition of the basic medium, caused the formation of structures of both types, though with a low frequency. Phytohormone BA of the cytokinin type had a similar effect. In this case, the frequency of structures was slightly higher, and the developed structures were represented mainly by embryoids. The joint action of cytokinin and auxin was the most favorable for the initiation of morphogenic structures. Such combination of phytohormones caused the formation of these structures with a frequency of 24.5-14.7% in the studied genotypes of winter rape. A similar effect of phytohormones on the induction and development of morphogenic structures was also observed in spring rape. In this case, a single basic MS medium was used. The experiment included treatments where phytohormones were absent (control), as well as various combinations of auxin and cytokinin. In the control treatment, the formation of new structures was not noted. In treatments with phytohormones, in addition to the medium with the combination of auxin and cytokinin, the medium in which only cytokinin was present was also rather effective. The treatment in which the action of auxin 2,4-D was combined with the action of another auxin, NAA, turned out to be practically ineffective. Thus, it was found that for the induction of morphogenic structures from microspores in rape anther culture of the tested genotypes, the combination of cytokinin with auxin, or the use of only single cytokinin BA without other phytohormones, had the most positive effect.


Author(s):  
Roohi Mohi-ud-din ◽  
Reyaz Hassan Mir ◽  
Prince Ahad Mir ◽  
Saeema Farooq ◽  
Syed Naiem Raza ◽  
...  

Background: Genus Berberis (family Berberidaceae), which contains about 650 species and 17 genera worldwide, has been used in folklore and various traditional medicine systems. Berberis Linn. is the most established group among genera with around 450-500 species across the world. This comprehensive review will not only help researchers for further evaluation but also provide substantial information for future exploitation of species to develop novel herbal formulations. Objective: The present review is focussed to summarize and collect the updated review of information of Genus Berberis species reported to date regarding their ethnomedicinal information, chemical constituents, traditional/folklore use, and reported pharmacological activities on more than 40 species of Berberis. Conclusion: A comprehensive survey of the literature reveals that various species of the genus possess various phytoconstituents mainly alkaloids, flavonoid based compounds isolated from different parts of a plant with a wide range of pharmacological activities. So far, many pharmacological activities like anti-cancer, anti-hyperlipidemic, hepatoprotective, immunomodulatory, anti-inflammatory both in vitro & in vivo and clinical study of different extracts/isolated compounds of different species of Berberis have been reported, proving their importance as a medicinal plant and claiming their traditional use.


2019 ◽  
Vol 20 (12) ◽  
pp. 1227-1243
Author(s):  
Hina Qamar ◽  
Sumbul Rehman ◽  
D.K. Chauhan

Cancer is the second leading cause of morbidity and mortality worldwide. Although chemotherapy and radiotherapy enhance the survival rate of cancerous patients but they have several acute toxic effects. Therefore, there is a need to search for new anticancer agents having better efficacy and lesser side effects. In this regard, herbal treatment is found to be a safe method for treating and preventing cancer. Here, an attempt has been made to screen some less explored medicinal plants like Ammania baccifera, Asclepias curassavica, Azadarichta indica, Butea monosperma, Croton tiglium, Hedera nepalensis, Jatropha curcas, Momordica charantia, Moringa oleifera, Psidium guajava, etc. having potent anticancer activity with minimum cytotoxic value (IC50 >3μM) and lesser or negligible toxicity. They are rich in active phytochemicals with a wide range of drug targets. In this study, these medicinal plants were evaluated for dose-dependent cytotoxicological studies via in vitro MTT assay and in vivo tumor models along with some more plants which are reported to have IC50 value in the range of 0.019-0.528 mg/ml. The findings indicate that these plants inhibit tumor growth by their antiproliferative, pro-apoptotic, anti-metastatic and anti-angiogenic molecular targets. They are widely used because of their easy availability, affordable price and having no or sometimes minimal side effects. This review provides a baseline for the discovery of anticancer drugs from medicinal plants having minimum cytotoxic value with minimal side effects and establishment of their analogues for the welfare of mankind.


Author(s):  
Shangfei Wei ◽  
Tianming Zhao ◽  
Jie Wang ◽  
Xin Zhai

: Allostery is an efficient and particular regulatory mechanism to regulate protein functions. Different from conserved orthosteric sites, allosteric sites have distinctive functional mechanism to form the complex regulatory network. In drug discovery, kinase inhibitors targeting the allosteric pockets have received extensive attention for the advantages of high selectivity and low toxicity. The approval of trametinib as the first allosteric inhibitor validated that allosteric inhibitors could be used as effective therapeutic drugs for treatment of diseases. To date, a wide range of allosteric inhibitors have been identified. In this perspective, we outline different binding modes and potential advantages of allosteric inhibitors. In the meantime, the research processes of typical and novel allosteric inhibitors are described briefly in terms of structureactivity relationships, ligand-protein interactions and in vitro and in vivo activity. Additionally, challenges as well as opportunities are presented.


2019 ◽  
Vol 18 (26) ◽  
pp. 2209-2229 ◽  
Author(s):  
Hai Pham-The ◽  
Miguel Á. Cabrera-Pérez ◽  
Nguyen-Hai Nam ◽  
Juan A. Castillo-Garit ◽  
Bakhtiyor Rasulev ◽  
...  

One of the main goals of in silico Caco-2 cell permeability models is to identify those drug substances with high intestinal absorption in human (HIA). For more than a decade, several in silico Caco-2 models have been made, applying a wide range of modeling techniques; nevertheless, their capacity for intestinal absorption extrapolation is still doubtful. There are three main problems related to the modest capacity of obtained models, including the existence of inter- and/or intra-laboratory variability of recollected data, the influence of the metabolism mechanism, and the inconsistent in vitro-in vivo correlation (IVIVC) of Caco-2 cell permeability. This review paper intends to sum up the recent advances and limitations of current modeling approaches, and revealed some possible solutions to improve the applicability of in silico Caco-2 permeability models for absorption property profiling, taking into account the above-mentioned issues.


Sign in / Sign up

Export Citation Format

Share Document