Isolation of Alkaloids from Papaver rhoeas (Papaveraceae) Wildly Grown in Iraq

Author(s):  
Amenah Ayad Lafta ◽  
Maha N. Hamad

The plant Papaver rhoeas ,which belongs to family Papaveraceae and known as common poppy is wildly grown in Iraq .It was used in traditional medicine in wide range of diseases including inflammation, diarrhea, sleep disorders, treatment of cough, analgesia, and also to reduce the withdrawal signs of opioid addiction. The project provide the first comprehensive research done in Iraq to study the phytochemical and the methods of extraction and separation of alkaloids from Papaver rhoeas wildly grown in Iraq .The plant was harvested in April 2019 from Zurbatiya is an Iraqi town located at the northeast of Waist province in Iraq.The collected plant was washed thoroughly, dries under shade, and grounding in a mechanical grinder to fine powder. The plant was extracted by hot extraction method using Methanol then fractionation was done to separate alkaloids from chloroform Fraction by TLC and PTLC .The alkaloids were isolated and purified by PTLC then subjected to various analytical techniques for alkaloids identification such as UV, LC mass and IR .The result was indicated of three alkaloids (dihydrocodien, chelidonine and papaverrubine C) in Papaver rhoeas plant.

Author(s):  
R.W. Horne

The technique of surrounding virus particles with a neutralised electron dense stain was described at the Fourth International Congress on Electron Microscopy, Berlin 1958 (see Home & Brenner, 1960, p. 625). For many years the negative staining technique in one form or another, has been applied to a wide range of biological materials. However, the full potential of the method has only recently been explored following the development and applications of optical diffraction and computer image analytical techniques to electron micrographs (cf. De Hosier & Klug, 1968; Markham 1968; Crowther et al., 1970; Home & Markham, 1973; Klug & Berger, 1974; Crowther & Klug, 1975). These image processing procedures have allowed a more precise and quantitative approach to be made concerning the interpretation, measurement and reconstruction of repeating features in certain biological systems.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1537
Author(s):  
Aneta Saletnik ◽  
Bogdan Saletnik ◽  
Czesław Puchalski

Raman spectroscopy is one of the main analytical techniques used in optical metrology. It is a vibration, marker-free technique that provides insight into the structure and composition of tissues and cells at the molecular level. Raman spectroscopy is an outstanding material identification technique. It provides spatial information of vibrations from complex biological samples which renders it a very accurate tool for the analysis of highly complex plant tissues. Raman spectra can be used as a fingerprint tool for a very wide range of compounds. Raman spectroscopy enables all the polymers that build the cell walls of plants to be tracked simultaneously; it facilitates the analysis of both the molecular composition and the molecular structure of cell walls. Due to its high sensitivity to even minute structural changes, this method is used for comparative tests. The introduction of new and improved Raman techniques by scientists as well as the constant technological development of the apparatus has resulted in an increased importance of Raman spectroscopy in the discovery and defining of tissues and the processes taking place in them.


2014 ◽  
Vol 2014 ◽  
pp. 1-32 ◽  
Author(s):  
Shamkant B. Badgujar ◽  
Vainav V. Patel ◽  
Atmaram H. Bandivdekar

Foeniculum vulgareMill commonly called fennel has been used in traditional medicine for a wide range of ailments related to digestive, endocrine, reproductive, and respiratory systems. Additionally, it is also used as a galactagogue agent for lactating mothers. The review aims to gather the fragmented information available in the literature regarding morphology, ethnomedicinal applications, phytochemistry, pharmacology, and toxicology ofFoeniculum vulgare. It also compiles available scientific evidence for the ethnobotanical claims and to identify gaps required to be filled by future research. Findings based on their traditional uses and scientific evaluation indicates thatFoeniculum vulgareremains to be the most widely used herbal plant. It has been used for more than forty types of disorders. Phytochemical studies have shown the presence of numerous valuable compounds, such as volatile compounds, flavonoids, phenolic compounds, fatty acids, and amino acids. Compiled data indicate their efficacy in severalin vitroandin vivopharmacological properties such as antimicrobial, antiviral, anti-inflammatory, antimutagenic, antinociceptive, antipyretic, antispasmodic, antithrombotic, apoptotic, cardiovascular, chemomodulatory, antitumor, hepatoprotective, hypoglycemic, hypolipidemic, and memory enhancing property.Foeniculum vulgarehas emerged as a good source of traditional medicine and it provides a noteworthy basis in pharmaceutical biology for the development/formulation of new drugs and future clinical uses.


Author(s):  
Abdul Nasir ◽  
Atif Ali Khan Khalil ◽  
Muhammad Zeeshan Bhatti ◽  
Ashfaq Ur Rehman ◽  
Jiayi Li ◽  
...  

: Persicaria hydropiper (L.) Delarbre (family Polygonacea), commonly known as Polygonum hydropiper, is a popular medicinal plant used in traditional medicine. The plant is indigenous to the tropical northern hemisphere and temperate zone including China, Bangladesh, India, and Japan. The plant is used in folk medicine for numerous ailments such as hemorrhoids, antifertility, diarrhea, and dyspepsia. Its medicinal usage in Unani, Ayurveda, Siddha, and other traditional medicine is well-recognized. So far, a wide range of active phytochemicals of this plant has been identified, such as flavonoids, sulphated flavonoids, terpenoids, anthraquinones, steroids, coumarin, simple phenolics, and others. Pharmacological data reported in the literature suggest that various parts of P. hydropiper exhibit antimicrobial, antioxidant, hypoglycemic, antidepressant, cardioprotective, hepatoprotective, anticancer, and antifertility effects. The present review aim is to compile the coherently document research on the phytochemical, pharmacological, and biological activities of P. hydropiper from different parts of the globe.


Ocean Science ◽  
2009 ◽  
Vol 5 (4) ◽  
pp. 661-684 ◽  
Author(s):  
C. Moore ◽  
A. Barnard ◽  
P. Fietzek ◽  
M. R. Lewis ◽  
H. M. Sosik ◽  
...  

Abstract. Requirements for understanding the relationships between ocean color and suspended and dissolved materials within the water column, and a rapidly emerging photonics and materials technology base for performing optical based analytical techniques have generated a diverse offering of commercial sensors and research prototypes that perform optical measurements in water. Through inversion, these tools are now being used to determine a diverse set of related biogeochemical and physical parameters. Techniques engaged include measurement of the solar radiance distribution, absorption, scattering, stimulated fluorescence, flow cytometry, and various spectroscopy methods. Selective membranes and other techniques for material isolation further enhance specificity, leading to sensors for measurement of dissolved oxygen, methane, carbon dioxide, common nutrients and a variety of other parameters. Scientists are using these measurements to infer information related to an increasing set of parameters and wide range of applications over relevant scales in space and time.


1997 ◽  
Vol 92 ◽  
pp. 359-371 ◽  
Author(s):  
E. Photos-Jones ◽  
A. Cottier ◽  
A. J. Hall ◽  
L. G. Mendoni

The island of Kea in the North Cyclades was well known in antiquity for its miltos, a naturally occurring red iron oxide valued for its colour and wide range of applications. By combining geological field work, physico-chemical analytical techniques, simulation (heating) experiments as well as simple laboratory tests, this paper describes the study of Kean iron oxides in an attempt to characterize this material which is still largely elusive in the archaeological record. The present work corroborates previous observations about the superior quality of some Kean iron oxides. Furthermore, it puts forward the hypothesis that miltos may have been considered an industrial mineral, and as such may have been used as an umbrella term for a variety of materials including mineralogically distinct purple as well as red iron oxides.


Author(s):  
TG Harrison ◽  
AJ Shaw ◽  
KL Shallcross ◽  
SJ Williams ◽  
DE Shallcross

Spectroscopy covers a wide range of analytical techniques, a small sub-set of which UK pre-university chemistry students are required to study. The expense of such equipment means that it is not available to the vast majority of schools whilst it is commonplace in university chemistry departments. This article discusses the evolution of the Bristol ChemLabS spectroscopy outreach activities. The advantages and disadvantages of this method of engagement for both the participants and the providers are discussed from 10 years of activity.


2021 ◽  
Vol 1019 ◽  
pp. 194-204
Author(s):  
S. Sudhaparimala ◽  
R. Usha

Graphene, functionalized with the heteroatoms like nitrogen, oxygen and sulphur atoms has been well explored for a wide range of applications but only few reports are available on its adsorption and photocatalytic application in the degradation of chlorophenols and organic dyes. A simple and energy-efficient process to prepare graphene oxide and sulphur doped graphene oxide was developed. The micro structure and surface morphology were confirmed by the analytical techniques of Powder X-ray diffractogram (PXRD), Fourier Transformed Raman Spectroscopy (FT-Raman), Scanning Electron Microscopy. The results were suggestive of the structures suitable for screening their catalytic activity in the degradation of the highly toxic polychlorophenols and organic dyes. The adsorption and photo catalytic properties of the asprepared samples were screened for the degradation process and it was found that sulphur doped graphene oxide showed more positive results for the degradation of chlorophenols than graphene oxide. Under the given experimental conditions the decoloration of dyes were not satisfactory. Ultimately, the study provided an economical and efficient, method for tuning graphene structures for the removal of pollutants in wastewater.


2020 ◽  
Vol 10 (4) ◽  
pp. 219
Author(s):  
Beata Rzepka-Migut ◽  
Justyna Paprocka

Autism spectrum disorder (ASD) and attention-deficit/hyperactivity disorder (ADHD) are neurodevelopmental disorders with disturbed melatonin secretion profile and sleep problems. The growing incidence of ASD and ADHD inspires scientists to research the underlying causes of these conditions. The authors focused on two fundamental aspects, the first one being the presentation of the role of melatonin in ASD and ADHD and the second of the influence of melatonin treatment on sleep disorders. The authors present the use of melatonin both in the context of causal and symptomatic treatment and discuss melatonin supplementation: Dosage patterns, effectiveness, and safety. Sleep disorders may have a different clinical picture, so the assessment of exogenous melatonin efficacy should also refer to a specific group of symptoms. The review draws attention to the wide range of doses of melatonin used in supplementation and the need to introduce unified standards especially in the group of pediatric patients.


10.1144/sp484 ◽  
2020 ◽  
Vol 484 (1) ◽  
pp. NP-NP
Author(s):  
Patrick J. Dowey ◽  
Mark Osborne ◽  
Herbert Volk

Cutting-edge techniques have always been utilized in petroleum exploration and production to reduce costs and improve efficiencies. The demand for petroleum in the form of oil and gas is expected to increase for electricity production, transport and chemical production, largely driven by an increase in energy consumption in the developing world. Innovations in analytical methods will continue to play a key role in the industry moving forwards as society shifts towards lower carbon energy systems and more advantaged oil and gas resources are targeted. This volume brings together new analytical approaches and describes how they can be applied to the study of petroleum systems. The papers within this volume cover a wide range of topics and case studies, in the fields of fluid and isotope geochemistry, organic geochemistry, imaging and sediment provenance. The work illustrates how the current, state-of-the-art technology can be effectively utilised to address ongoing challenges in petroleum geoscience.


Sign in / Sign up

Export Citation Format

Share Document