Sample Preparation Challenges In WLCSP Epoxy Underfill Coating Removal

Author(s):  
Jason H. Lagar ◽  
Rudolf A. Sia

Abstract Most Wafer Level Chip Scale Package (WLCSP) units returned by customers for failure analysis are mounted on PCB modules with an epoxy underfill coating. The biggest challenge in failure analysis is the sample preparation to remove the WLCSP device from the PCB without inducing any mechanical defect. This includes the removal of the underfill material to enable further electrical verification and fault isolation analysis. This paper discusses the evaluations conducted in establishing the WLCSP demounting process and removal of the epoxy underfill coating. Combinations of different sample preparation techniques and physical failure analysis steps were evaluated. The established process enabled the electrical verification, fault isolation and further destructive analysis of WLCSP customer returns mounted on PCB and with an epoxy underfill coating material. This paper will also showcase some actual full failure analysis of WLCSP customer returns where the established process played a vital role in finding the failure mechanism.

Author(s):  
Ng Sea Chooi ◽  
Chor Theam Hock ◽  
Ma Choo Thye ◽  
Khoo Poh Tshin ◽  
Dan Bockelman

Abstract Trends in the packaging of semiconductors are towards miniaturization and high functionality. The package-on-package(PoP) with increasing demands is beneficial in cost and space saving. The main failure mechanisms associated with PoP technology, including open joints and warpage, have created a lot of challenges for Assembly and Failure Analysis (FA). This paper outlines the sample preparation process steps to overcome the challenges to enable successful failure analysis and optical probing.


Author(s):  
Andrew J. Komrowski ◽  
N. S. Somcio ◽  
Daniel J. D. Sullivan ◽  
Charles R. Silvis ◽  
Luis Curiel ◽  
...  

Abstract The use of flip chip technology inside component packaging, so called flip chip in package (FCIP), is an increasingly common package type in the semiconductor industry because of high pin-counts, performance and reliability. Sample preparation methods and flows which enable physical failure analysis (PFA) of FCIP are thus in demand to characterize defects in die with these package types. As interconnect metallization schemes become more dense and complex, access to the backside silicon of a functional device also becomes important for fault isolation test purposes. To address these requirements, a detailed PFA flow is described which chronicles the sample preparation methods necessary to isolate a physical defect in the die of an organic-substrate FCIP.


Author(s):  
Gwee Hoon Yen ◽  
Ng Kiong Kay

Abstract Today, failure analysis involving flip chip [1] with copper pillar bump packaging technologies would be the major challenges faced by analysts. Most often, handling on the chips after destructive chemical decapsulation is extremely critical as there are several failure analysis steps to be continued such as chip level fault localization, chip micro probing for fault isolation, parallel lapping [2, 3, 4] and passive voltage contrast. Therefore, quality of sample preparation is critical. This paper discussed and demonstrated a quick, reliable and cost effective methodology to decapsulate the thin small leadless (TSLP) flip chip package with copper pillar (CuP) bump interconnect technology.


Author(s):  
Hyoung H. Kang ◽  
Michael A. Gribelyuk ◽  
Oliver D. Patterson ◽  
Steven B. Herschbein ◽  
Corey Senowitz

Abstract Cross-sectional style transmission electron microscopy (TEM) sample preparation techniques by DualBeam (SEM/FIB) systems are widely used in both laboratory and manufacturing lines with either in-situ or ex-situ lift out methods. By contrast, however, the plan view TEM sample has only been prepared in the laboratory environment, and only after breaking the wafer. This paper introduces a novel methodology for in-line, plan view TEM sample preparation at the 300mm wafer level that does not require breaking the wafer. It also presents the benefit of the technique on electrically short defects. The methodology of thin lamella TEM sample preparation for plan view work in two different tool configurations is also presented. The detailed procedure of thin lamella sample preparation is also described. In-line, full wafer plan view (S)TEM provides a quick turn around solution for defect analysis in the manufacturing line.


Author(s):  
Swaminathan Subramanian ◽  
Khiem Ly ◽  
Tony Chrastecky

Abstract Visualization of dopant related anomalies in integrated circuits is extremely challenging. Cleaving of the die may not be possible in practical failure analysis situations that require extensive electrical fault isolation, where the failing die can be submitted of scanning probe microscopy analysis in various states such as partially depackaged die, backside thinned die, and so on. In advanced technologies, the circuit orientation in the wafer may not align with preferred crystallographic direction for cleaving the silicon or other substrates. In order to overcome these issues, a focused ion beam lift-out based approach for site-specific cross-section sample preparation is developed in this work. A directional mechanical polishing procedure to produce smooth damage-free surface for junction profiling is also implemented. Two failure analysis applications of the sample preparation method to visualize junction anomalies using scanning microwave microscopy are also discussed.


1997 ◽  
Vol 3 (S2) ◽  
pp. 357-358
Author(s):  
C. Amy Hunt

The demand for TEM analysis in semiconductor failure analysis is rising sharply due to the shrinking size of devices. A well-prepared sample is a necessity for getting meaningful results. In the past decades, a significant amount of effort has been invested in improving sample preparation techniques for TEM specimens, especially precision cross-sectioning techniques. The most common methods of preparation are mechanical dimpling & ion milling, focused ion beam milling (FIBXTEM), and wedge mechanical polishing. Each precision XTEM technique has important advantages and limitations that must be considered for each sample.The concept for both dimpling & ion milling and wedge specimen preparation techniques is similar. Both techniques utilize mechanical polishing to remove the majority of the unwanted material, followed by ion milling to assist in final polishing or cleaning. Dimpling & ion milling produces the highest quality samples and is a relatively easy technique to master.


2021 ◽  
Author(s):  
Kuang-Tse Ho ◽  
Cheng-Che Li

Abstract This research summarizes failure analysis results about ionimplantation related issues in Si-based power devices, including diode, MOSFET and IGBT. To find out this kind of defects, sample preparation, fault isolation and SCM inspection are critical steps, which will be explained in detail in this paper.


Author(s):  
Gil Garteiz ◽  
Javeck Verdugo ◽  
David Aveline ◽  
Eric Williams ◽  
Arvid Croonquist ◽  
...  

Abstract In this paper, a failure analysis case study on a custom-built vacuum enclosure is presented. The enclosure’s unique construction and project requirement to preserve the maximum number of units for potential future use in space necessitated a fluorocarbon liquid bath for fault isolation and meticulous sample preparation to preserve the failure mechanism during failure analysis.


Author(s):  
Lihong Cao ◽  
Manasa Venkata ◽  
Jeffery Huynh ◽  
Joseph Tan ◽  
Meng-Yeow Tay ◽  
...  

Abstract This paper describes the application of lock-in thermography (LIT) for flip-chip package-level failure analysis. LIT successfully detected and localized short failures related to both die/C4 bumps and package defects inside the organic substrate. The detail sample preparation to create short defects at different layers, LIT fault isolation methodology, and case studies performed with LIT are also presented in this paper.


Sign in / Sign up

Export Citation Format

Share Document