Enhanced Comparison of Lock-In Thermography and Magnetic Microscopy for 3D Defect Localization of System in Packages

Author(s):  
Christian Schmidt ◽  
Frank Altmann ◽  
David P. Vallett

Abstract Lock-in thermography and magnetic current imaging are emerging as the two image-based fault isolation methods most capable of meeting the challenges of short and open defect localization in thick, opaque assemblies. Such devices are rapidly becoming prevalent as 3D integration begins to ramp up production. This paper expands on previously published work with a qualitative comparison of the techniques on single chip and stacked die packages with known designed-in or FIB created defects.

Author(s):  
Ke-Ying Lin ◽  
Pei-Fen Lue ◽  
Jayce Liu ◽  
Paul Kenneth Ang

Abstract The paper demonstrates accurate fault isolation information of metal-insulator-metal (MiM) capacitor failures by lock-in thermograph (LIT). In this study, a phase image spot location at a lock-in frequency larger than 5 Hz gives more accurate defect localization than an LIT amplitude image or OBIRCH to determine the next FA steps.


Author(s):  
Ian Kearney ◽  
Mark Dipsey

Abstract Photoluminescence, defect-band emission, and Lock-in Infrared Thermography (LIT) generally enable the correlation of multi-crystalline silicon defect types. Long Wavelength Infrared (LWIR) thermal imaging has traditionally seen limited application in failure analysis. LWIR cameras are typically uncooled systems using a microbolometer Focal Plane Arrays (FPA) commonly used in industrial IR applications, although cooled LWIR cameras using Mercury Cadmium Tellurium (MCT) detectors exists as well. On the contrary, the majority of the MWIR cameras require cooling, using either liquid nitrogen or a Stirling cycle cooler. Cooling to approximately −196 °C (77 K), offers excellent thermal resolution, but it may restrict the span of applications to controlled environments. Recent developments in LWIR uncooled and unstabilized micro-bolometer technology combined with microscopic IR lens design advancements are presented as an alternative solution for viable low-level leakage (LLL) defect localization and circuit characterization. The 30 micron pitch amorphous silicon type detector used in these analyses, rather than vanadium oxide (VOx), has sensitivity less than 50mK at 25C. Case studies reported demonstrate LWIR enhanced package-level and die-level defect localization contrasted with other quantum and thermal detectors in localization systems.


Author(s):  
Haonan Bai ◽  
Lan Yin Lee ◽  
Yang Jing ◽  
Peter Floyd Salinas ◽  
Kok Keng Chua

Abstract Failure analysis and defect localization on 28nm All Programmable Zynq System-on-Chip (SoC) device is extremely challenging. While conventional FPGA, which only consists of the Programmable Logic, has greater ease and flexibility in pattern generation during fault isolation, the all programmable SoC device integrates a dual ARM Cortex-A9 cores with Programmable Logic (PL) in a single chip. The cache data access in-between processor and PL is more complex and test methodology has lesser degree of control on cache data flow and stack sequence. This paper introduced an advanced fault isolation test methodology combining Software Development Kit (SDK) with scan based diagnostic test for cache failures. It successfully pinpoint to failure locations with physical defects found. As conventional physical failure analysis approaches using SEM based passive voltage contrast could not observe any abnormalities, current imaging and nano-probing measurement using AFP played critical roles in detecting nano-ampere leakages prior subsequent TEM analysis. The findings were then feedback to the foundry for process improvement. Furthermore, a new screening methodology is innovated where an extreme low-voltage test at high temperature in Automatic Test to detect and eliminate the process marginal leakage failure.


2018 ◽  
Author(s):  
Daechul Choi ◽  
Yoonseong Kim ◽  
Jongyun Kim ◽  
Han Kim

Abstract In this paper, we demonstrate cases for actual short and open failures in FCB (Flip Chip Bonding) substrates by using novel non-destructive techniques, known as SSM (Scanning Super-conducting Quantum Interference Device Microscopy) and Terahertz TDR (Time Domain Reflectometry) which is able to pinpoint failure locations. In addition, the defect location and accuracy is verified by a NIR (Near Infra-red) imaging system which is also one of the commonly used non-destructive failure analysis tools, and good agreement was made.


2018 ◽  
Author(s):  
Ke-Ying Lin ◽  
Chih-Yi Tang ◽  
Yu Chi Wang

Abstract The paper demonstrates the moving of lock-in thermography (LIT) spot location by adjusting the lock-in frequency from low to high. Accurate defect localization in stacked-die devices was decided by the fixed LIT spot location after the lock-in frequency was higher than a specific value depending on the depth of the defect in the IC. Physical failure analysis was performed based on LIT results, which provided clear physical defect modes of the stacked-die devices.


Author(s):  
Kristopher D. Staller

Abstract Cold temperature failures are often difficult to resolve, especially those at extreme low levels (< -40°C). Momentary application of chill spray can confirm the failure mode, but is impractical during photoemission microscopy (PEM), laser scanning microscopy (LSM), and multiple point microprobing. This paper will examine relatively low-cost cold temperature systems that can hold samples at steady state extreme low temperatures and describe a case study where a cold temperature stage was combined with LSM soft defect localization (SDL) to rapidly identify the cause of a complex cold temperature failure mechanism.


Author(s):  
Travis Eiles ◽  
Patrick Pardy

Abstract This paper demonstrates a breakthrough method of visible laser probing (VLP), including an optimized 577 nm laser microscope, visible-sensitive detector, and an ultimate-resolution gallium phosphide-based solid immersion lens on the 10 nm node, showing a 110 nm resolution. This is 2x better than what is achieved with the standard suite of probing systems using typical infrared (IR) wavelengths today. Since VLP provides a spot diameter reduction of 0.5x over IR methods, it is reasonable, based simply on geometry, to project that VLP using the 577 nm laser will meet the industry needs for laser probing for both the 10 nm and 7 nm process nodes. Based on its high level of optimization, including high resolution and specialized solid immersion lens, it is highly likely that this VLP technology will be one of the last optically-based fault isolation methods successfully used.


Author(s):  
J. Gaudestad ◽  
F. Rusli ◽  
A. Orozco ◽  
M.C. Pun

Abstract A Flip Chip sample failed short between power and ground. The reference unit had 418Ω and the failed unit with the short had 16.4Ω. Multiple fault isolation techniques were used in an attempt to find the failure with thermal imaging and Magnetic Current Imaging being the only techniques capable of localizing the defect. To physically verify the defect location, the die was detached from the substrate and a die cracked was seen using a visible optical microscope.


Author(s):  
Mayue Xie ◽  
Zhiguo Qian ◽  
Mario Pacheco ◽  
Zhiyong Wang ◽  
Rajen Dias ◽  
...  

Abstract Recently, a new approach for isolation of open faults in integrated circuits (ICs) was developed. It is based on mapping the radio-frequency (RF) magnetic field produced by the defective part fed with RF probing current, giving the name to Space Domain Reflectometry (SDR). SDR is a non-contact and nondestructive technique to localize open defects in package substrates, interconnections and semiconductor devices. It provides 2D failure isolation capability with defect localization resolution down to 50 microns. It is also capable of scanning long traces in Si. This paper describes the principles of the SDR and its application for the localization of open and high resistance defects. It then discusses some analysis methods for application optimization, and gives examples of test samples as well as case studies from actual failures.


Sign in / Sign up

Export Citation Format

Share Document