Pavement Friction Degradation Based on Pennsylvania Field Test Data

Author(s):  
Lingyu Li ◽  
S. Ilgin Guler ◽  
Eric T. Donnell

Pavement surface–tire friction is a critical safety element associated with roadway design, construction, and maintenance practices. The skid resistance of pavements generally declines over time and increases the risk of skidding-related crashes. On horizontal curves, lateral friction may be associated with lane-departure incidents, particularly as the pavement ages and drivers demand more lateral friction than the pavement surface–tire interaction can supply. On tangent roadway sections, longitudinal friction affects braking distances. As the skid-resistance properties of a pavement surface decline over time, braking distances increase, and may increase risks to driver safety. A comprehensive understanding of the process of pavement friction degradation could help highway agencies identify roadway segments that need maintenance to reduce the probability of skid-related incidents. This paper presents a survival analysis of friction degradation for asphalt pavement surfaces. Duration models were estimated with data collected annually along an Interstate highway in Pennsylvania to investigate the degradation of friction over time. These models consider traffic volume and roadway features to determine the probability that friction levels will remain above various friction thresholds. The resulting statistical models can help transportation agencies make better decisions about pavement maintenance to reduce safety risk.

Author(s):  
Srinivas R. Geedipally ◽  
Subasish Das ◽  
Michael P. Pratt ◽  
Dominique Lord

Horizontal curves are a major cause of crashes that lead to fatal and serious injuries. Much research has been conducted on the safety implications of geometric and traffic characteristics of curves. Variables describing curve geometry and speed have been incorporated into safety prediction methodologies. However, relatively less research has been conducted on the effects of pavement friction and weather data on safety. The objective of this study is to develop a methodology for determining the pavement friction needs for different levels of precipitation. To accomplish the study objective, rural two-lane, four-lane undivided, and four-lane divided horizontal curve data from Texas were used. Safety prediction models were developed that included traffic and geometric characteristics, skid number, and annual precipitation rate. These models were then used to develop the guidelines for assessing the safety performance of a curve of interest by accounting for curve geometry, pavement skid resistance, and exposure to the wet-weather conditions that are most relevant for considerations of skid resistance. For conducting a planning-level analysis to identify candidate sites for pavement friction treatments, researchers developed thresholds based on the combined effect of skid number and annual precipitation variables. Researchers also provided skid number thresholds for high-priority sites for two example locations that experience significantly different levels of annual precipitation.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Abhinav Kumar ◽  
Ankit Gupta

Road safety is of prime importance for pavement engineers and maintenance authorities. Pavement resistance to skidding of the vehicle has long been recognized as one of the leading parameters governing road safety and driving comfort, especially in wet weather conditions. The knowledge of skid resistance offered by pavement surface is very valuable information for road safety enhancements. Skid resistance is defined as the force developed when a tire that is prevented from rotation slides along the pavement surface. Evaluation of skid resistance over time and estimation of factors influencing it are important for pavement maintenance and rehabilitation planning. This paper presents a state-of-the-art review of various research works carried out for assessing critical parameters like surface texture, tire tread, rain intensity, temperature, loading condition, tire inflation pressure, and pavement type which control skid resistance of asphalt pavement at tire-road interface significantly. First, a brief overview of skid resistance and its importance in asphalt pavement is provided. Then, critical parameters influencing skid resistance are identified and reviewed more elaborately. Furthermore, the key relationship between skid resistance and various controlling parameters is reviewed and presented for a better understanding of skid variation analysis. Finally, a general discussion on skid resistance governing factors, their relative importance in maintaining safety and pavement performance, the complexity involved in computation, and established relationships with skid resistance is briefly summarized.


1986 ◽  
Vol 14 (1) ◽  
pp. 44-72 ◽  
Author(s):  
C. M. Mc C. Ettles

Abstract It is proposed that tire-pavement friction is controlled by thermal rather than by hysteresis and viscoelastic effects. A numerical model of heating effects in sliding is described in which the friction coefficient emerges as a dependent variable. The overall results of the model can be expressed in a closed form using Blok's flash temperature theory. This allows the factors controlling rubber friction to be recognized directly. The model can be applied in quantitative form to metal-polymer-ice contacts. Several examples of correlation are given. The difficulties of characterizing the contact conditions in tire-pavement friction reduce the model to qualitative form. Each of the governing parameters is examined in detail. The attainment of higher friction by small, discrete particles of aluminum filler is discussed.


Author(s):  
Mohammad Al-Assi ◽  
Emad Kassem ◽  
Richard Nielsen

Pavement friction measurements are collected and used to assess the functional characteristics of pavements to ensure an adequate level of friction. There are several factors that affect pavement friction including the properties of the tire rubber materials and pavement surface texture characteristics. This study utilized the close-range photogrammetry (CRP) technique to measure the pavement macrotexture and microtexture. Texture parameters were calculated from the collected and analyzed images of the pavement surface. The results of the CRP texture measurements were compared with typical measurement methods. The CRP texture measurements had excellent correlation with the measurement methods used in this study; however, the CRP offers a simple and accurate, yet inexpensive, alternative to the current methods used to measure surface macrotexture and microtexture. In addition, the CRP texture parameters were incorporated in the Persson friction model to predict skid friction as a function of rubber properties. The results demonstrated an excellent correlation between measured and predicted friction. This study greatly simplified the texture parameter calculations needed in the Persson friction model with good accuracy.


2020 ◽  
Vol 312 ◽  
pp. 06002
Author(s):  
Turki I Al-Suleiman ◽  
Subhi M Bazlamit ◽  
Mahmoud Azzama ◽  
Hesham S Ahmad

Allocated budgets for maintenance of road networks are normally limited. Therefore, not all roads receive the required attention they deserve in a timely manner. These roads are left to deteriorate until the next maintenance round. The cost associated with delayed maintenance is significantly excessive. A Pavement Maintenance Management System (PMMS) can be a useful tool for evaluation, prioritization of Maintenance and Rehabilitation (M&R) projects, and determination of funding requirements and allocations. The pavement condition is normally indexed using a parameter called Pavement Condition Index (PCI) which represents an overall assessment of surface defects by type, severity and extent. Periodic collections of PCI over time for different sections within the roadway network provide an approach to monitor changes in pavement serviceability over time and can produce useful data to predict and evaluate required maintenance solutions and their associated cost. The researchers intend to use available data collected over the span of a year and a half on sections within the roadway network at the campus of Al-Zaytoonah University of Jordan (ZUJ) to study the relation between the maintenance cost and the pavement deterioration rate. This study may incorporate variables such as pavement age, traffic volumes, maintenance history and pavement condition assessment results. The available records of PCI will be analyzed and the findings will be clearly presented. The practical inclusion of the findings within the current PMMS used at the university will also be detailed.


1986 ◽  
Vol 108 (3) ◽  
pp. 455-461
Author(s):  
J. C. Wambold ◽  
J. J. Henry

It is generally agreed that the friction between a tire and a wet pavement (skid resistance) is controlled by the surface texture characteristics. Therefore, by measuring the relevant parameters describing texture, or by measuring a physical process dependent on texture, regression techniques can be used to relate skid resistance to the chosen texture parameter or process. Two scales of texture are of particular importance: microtexture (small-scale asperities) and macrotexture (large-scale asperities). This paper describes work performed to: (1) review candidate macrotexture and microtexture measurement methods that can be made at highway speeds (at or about 64 km/h [40 mph]), which are presently used or have potential for use in pavement texture measurement; (2) design and build a prototype of the most promising method; and (3) evaluate the effects of pavement surface texture on skid resistance. A prototype noncontact vision system that makes texture measurements at highway speeds was developed, and several improvements were made to upgrade the system to provide an improved prototype. Both hardware and software enhancements have yielded a texture measurement system that can obtain pavement macrotexture data in a fast, efficient, and reliable way.


2020 ◽  
Vol 10 (22) ◽  
pp. 8192
Author(s):  
Minghua Wei ◽  
Shaopeng Wu ◽  
Peide Cui ◽  
Tianyuan Yang ◽  
Yang Lv

Steel slag, the by-product of steelmaking, is a desirable alternative material for natural aggregate. However, there are few studies applying steel slag in the preventive maintenance of asphalt pavements, especially chip seal. The main objective of this study is to explore the feasibility of applying steel slag in chip seal and the effect of steel slag on the thermal exchange and aggregate retention properties. Furthermore, the surface features, including texture depth and skid resistance. of chip seal were also evaluated. The results show that the thermal exchange performances of chip seal vary with aggregate types. The ranking of the chip seal samples according to the cooling rate places ferrochromium (FER) slag as the fastest and basic oxygen furnace (BOF) slag as the slowest, with the basalt (BS) falling in between. The use of FER slag can make the chip seal resume traffic about ten minutes earlier than original samples. The skid resistance and texture depth of FER slag meet the requirements of the specification, although they are less than those of ordinary aggregates. Moreover, FER slag has a better aggregate retention performance than BOF slag and BS due to its spherical particles and alkaline surface. The application of steel slag in chip seal can recycle industrial waste, reduce the consumption of natural resources and promote economic pavement maintenance technology.


2020 ◽  
Vol 313 ◽  
pp. 00013
Author(s):  
Matej Brna ◽  
Michal Cingel

Road pavement roughness, in terms of skid resistance, can be described from a geometrical point of view as a texture or from a physical point of view as friction between a tire and a road surface. The paper deals with the comparison of asphalt and concrete pavement surface on selected newly built sections of the D1 motorway near the Ovčiarsko tunnel. Texture measurements were performed with a Static Road Scanner (SRS) capable of recording surface irregularities up to the microtexture level (2.49 µm resolution). A pendulum was used to determine the friction. Subsequently, the texture was evaluated using individual amplitude and wavelength characteristics and the friction was evaluated using the PTV parameter. Finally, correlations were searched between the roughness characteristics of asphalt concrete and cement concrete pavements, but also between texture and friction characteristics.


2021 ◽  
Vol 6 (3) ◽  
pp. 41 ◽  
Author(s):  
Sergio Copetti Callai ◽  
Cesare Sangiorgi

As cities grow in size, traffic also increases, thus making the population more exposed to road noise and traffic accidents. It is therefore important to study and understand which properties of the pavement influence its acoustic impact and skid resistance performance. The pavement texture plays a major role in generating noise and friction, and it can be engineered in order to control both of them at the same time. The phenomena regulating skid resistance are well understood today. The same applies for noise generation and propagation; the literature contains methods of designing the pavement surface layer to achieve consistent results. Several types of solutions can be found for asphalt mixtures, most of them derived from decades of studies and research. They use different approaches to be effective for noise and friction, but all have in common the control of the surface’s macro and microtexture. Finally, some considerations are made regarding novel paving solutions with artificial aggregates instead of natural ones to address noise and skid resistance.


Author(s):  
Minh-Tan Do ◽  
Hassan Zahouani ◽  
Roberto Vargiolu

Development of a device for measuring road surface microtexture and the determination of a microtexture parameter related to wet road/tire friction are discussed. A laser autofocus system was selected from existing devices. The required characteristics were defined from consideration of the contact between wet roads and tires. The autofocus principle is presented briefly, and comparison is made with a tactile system. The microtexture parameter, called the theta parameter, is defined from the useful parts of the texture profiles, that is, those in contact with the tire. It characterizes relative positions of profile peaks. A simple method was proposed to define the peaks. The profile analysis program is presented briefly. Relevance of the theta parameter was validated on surfaces composed of coarse aggregates with planar exposed faces. The specimens were polished using a projection method to emphasize the microtexture contrast between surfaces. Friction was measured using a skid resistance tester (SRT) pendulum. Profiles were measured using both laser and tactile systems. Characteristics of profiles are given. The statistical distribution of theta values obtained on a profile may be described by an exponential function. Close agreement was found between theta values obtained from laser and tactile profiles, values from laser profiles being somewhat lower. The difference is attributed to profile length. Fair correlation was found ( r2 > 0.80) between theta values and SRT friction, and similar tendencies were observed from laser and tactile data.


Sign in / Sign up

Export Citation Format

Share Document