scholarly journals Ecological features of No-till technology in the conditions of the Southern Steppe of Ukraine

2020 ◽  
Vol 108 (4) ◽  
pp. 47-53
Author(s):  
T. Manushkina ◽  
◽  
А. Drobitko ◽  
T. Kachanova ◽  
O. Heraschenko

Ecological features of No-till technology in the conditions of the Southern Steppe of Ukraine The effect of No-till technology on soil density, soil moisture reserves, soil microbiological activity, and crop yields was studied. The increase in crop yield up to 14.3-22.9% by No-till technology allowed us to draw a conclusion about optimizing soil fertility indicators in the climatic conditions of the southern Steppe zone of Ukraine in comparison with traditional intensive technologies. It was shown that the introduction of No-till technology will allow improve environmental processes in the soil, reduce the anthropogenic load on agroecosystems and the manifestation of erosion processes, increase crop yields and reduce energy costs for their cultivation. Keywords: soil, No-till technology, soil density, soil moisture, fertility, yield.

2020 ◽  
Author(s):  
Kirsten Findell ◽  
Patrick Keys ◽  
Ruud van der Ent ◽  
Benjamin Lintner ◽  
Alexis Berg ◽  
...  

<p>Understanding vulnerabilities of continental precipitation to changing climatic conditions is of critical importance to society at large. Terrestrial precipitation is fed by moisture originating as evaporation from oceans and from recycling of water evaporated from continental sources. In this study, continental precipitation and evaporation recycling processes in the Earth system model GFDL-ESM2G are shown to be consistent with estimates from two different reanalysis products. The GFDL-ESM2G simulations of historical and future climate also show that values of continental moisture recycling ratios were systematically higher in the past and will be lower in the future.</p><p>Global mean recycling ratios decrease 2%–3% with each degree of temperature increase, indicating the increased importance of oceanic evaporation for continental precipitation. Theoretical arguments for recycling changes stem from increasing atmospheric temperatures and evaporative demand that drive increases in evaporation over oceans that are more rapid than those over land as a result of terrestrial soil moisture limitations. Simulated recycling changes are demonstrated to be consistent with these theoretical arguments. A simple prototype describing this theory effectively captures the zonal mean behavior of GFDL-ESM2G.</p><p>Key sources of terrestrial evaporation, notably the interior of the Amazon basin and parts of the Ganges-Brahmaputra and Indus River basins, may experience reductions in moisture recycling. This has implications for key sink regions of terrestrial recycled precipitation, especially in rain-fed agricultural regions where crop yields will become increasingly soil moisture limited, such as the La Plata River basin, the corn producing regions of North America, southern Africa and the Sahel.</p><p>The results presented here have been published last year in Journal of Climate dx.doi.org/10.1175/JCLI-D-19-0145.1</p><p> </p>


2009 ◽  
Vol 4 (2) ◽  
pp. 191-207 ◽  
Author(s):  
Riziki S. Shemdoe ◽  
Idris S. Kikula ◽  
Patrick Van Damme

This article presents local knowledge on ecosystem management by analyzing and discussing traditional tillage practices applied by smallholder farmers as a response to drought risks in dryland areas of Mpwapwa District, central Tanzania. Farming activities in the area wholly depend on rain-fed systems. Information from key informants and in-depth household interviews indicate that farmers in this area use three different traditional tillage practices—no-till (sesa), shallow tillage (kutifua), and ridges (matuta). Available information suggests that selection of a particular practice depends on affordability (in terms of costs and labor requirements), perceived ability to retain nutrient and soil-water, and improvement of control of erosion and crop yield. In this area, smallholder farmers perceive no-till practice to contribute to more weed species, hence more weeding time and labor are needed than in the other two practices. The no-till practice also contributes to low soil fertility, low soil moisture retention, and poor crop yield. No plans have been made to introduce irrigation farming in these marginal areas of central Tanzania. Thus, improving the ability of the tillage practices to conserve soil moisture and maintain soil fertility nutrients using locally available materials are important tasks to be carried out. This will ensure the selection of practices that will have positive influence on improved crop yields in the area.


Author(s):  
Л. І. Лєві

Розглянуто нейромережевий підхід до автоматизованого керування вологозабезпеченістю сільськогосподарських культур. Сучасний стан теорії і практики створення штучних нейронних мереж і нейрокомп’ютерів надав можливість розробки принципово нових алгоритмів і методів керування складними нелінійними динамічними об'єктами. Це дозволяє підвищити точність керування вологістю ґрунту, забезпечити отримання планових врожаїв сільськогосподарських культур, економити водні та енергетичні ресурси за рахунок їх раціонального використання. The highest yield of agricultural crops is achieved with the optimal amount of moisture, nutrition, heat, air and light. At the same time, the water regime of the soil is necessary for crops and is created by the appropriate irrigation regime, which establishes the norms, timing and amount of irrigation depending on the biological characteristics of the crops, natural and economic conditions. In determining the irrigation water flow, water consumption or total evaporation is taken into account, depending on climatic conditions, the amount of thermal energy supplied to the surface, soil moisture, the type and yield of the crop. Therefore, issues of adaptation and self-study of automated soil moisture management systems under the influence of random weather factors, changes in the characteristics of the control object, improvement of control accuracy due to the operational accounting of the effect of disturbances on the object, ensuring the production of planned crop yields while rational use of energy and water resources are relevant. In addition, modern moisture management systems for agricultural crops should not only ensure sufficient control accuracy, but also predict the plants need for water for a certain period, minimize energy and water costs without yield loss, be reliable and convenient in operation, provide the operator with complete and timely information about the value of all parameters and the state of the control system. To solve these problems, an approach to automating the process of controlling irrigation systems using neural networks has been considered. The proposed approach allows to improve the accuracy of soil moisture management, to ensure the production of planned crop yields, to save water and energy resources due to their rational use.


2019 ◽  
Vol 32 (22) ◽  
pp. 7713-7726 ◽  
Author(s):  
Kirsten L. Findell ◽  
Patrick W. Keys ◽  
Ruud J. van der Ent ◽  
Benjamin R. Lintner ◽  
Alexis Berg ◽  
...  

Abstract Understanding vulnerabilities of continental precipitation to changing climatic conditions is of critical importance to society at large. Terrestrial precipitation is fed by moisture originating as evaporation from oceans and from recycling of water evaporated from continental sources. In this study, continental precipitation and evaporation recycling processes in the Earth system model GFDL-ESM2G are shown to be consistent with estimates from two different reanalysis products. The GFDL-ESM2G simulations of historical and future climate also show that values of continental moisture recycling ratios were systematically higher in the past and will be lower in the future. Global mean recycling ratios decrease 2%–3% with each degree of temperature increase, indicating the increased importance of oceanic evaporation for continental precipitation. Theoretical arguments for recycling changes stem from increasing atmospheric temperatures and evaporative demand that drive increases in evaporation over oceans that are more rapid than those over land as a result of terrestrial soil moisture limitations. Simulated recycling changes are demonstrated to be consistent with these theoretical arguments. A simple prototype describing this theory effectively captures the zonal mean behavior of GFDL-ESM2G. Implications of such behavior are particularly serious in rain-fed agricultural regions where crop yields will become increasingly soil moisture limited.


Author(s):  
RAMPRABU .J ◽  
KAMINI .D

Appropriate climatic condition are necessary for plant growth ,improve crop yields, efficient use of water and to control the diseased plants. To protect the plants from the adverse climatic conditions such as wind, cold, precepitation, excessive radiation, extreme temperature, insects and diseases.The need for greenhouse automation arises. Our system uses different sensors such as temperature ,LDR,humidifier,soil moisture and camera.The sensed signal from the above sensors are send to ARM 7 controller and the parameters such as temperature,light intensity, humidity,soil moisture and pest are controlled .The pest is identified using camera, processed by Matlab. The sensed information and the environment condition is send to the mobile web server of the greenhouse owner via GPRS.


The aim of the study is to compare the parameters of the crop yields, phenological development and commercial production of cucumbers under conventional and trellis method in open areas of the Tashkent region of Uzbekistan. The technology of growing cucumbers by the trellis method in open ground for vegetables is an innovative way on small farms and in the country’s gardens. Unlike the conventional method, under the trellis method the number of seedlings increases, the air exchange between plants is improved, the soil moisture content is also improved, the quality of fruits increases and the diseases in the soil decrease. In samples of Uzbekistan 740, Navruz, Sevinch, Samar F1 and Orzu F1, high merchantability in was obtained. Compared to the traditional planting method, the trellis method allowed to enhance crop yields by 4.3, 5.0, 6.6 t/ha for the Uzbekistan-740, Nаvruz and Sevinch varieties and increased yields by 6.5 and 6, 8 t/ha for Samar F1 and Orzu F1 hybrids, respectively. In addition, marketable products of Uzbekistan-740, Navruz and Sevinch varieties were 24.6, 32.4 and 38.8 t/ha, for Samar F1 and Orzu F1 hybrids - 39.7 and 42.8 t/ha, respectively. The research results proved the feasibility of growing cucumbers using trellis technology in open ground for similar soil and climatic conditions of Uzbekistan..


2020 ◽  
Vol 11 (4) ◽  
pp. 14-25
Author(s):  
L. A. Garbar ◽  
◽  
N. V. Knap ◽  

An important place among the factors that ensure a high yield of sunflower is occupied by plant nutrition conditions throughout the growing season and technological measures aimed at realizing the genetic potential of sunflower in some regions of Ukraine. It to Deeply study the potential of domestic hybrids under different growing conditions is necessary to identify their competitiveness and promotion, which will increase the quality and yield of the crop as a whole. Introduction and application in the production of new complex microfertilizers on the background of basic fertilizers, which can increase the efficiency of plant nutrients of mineral fertilizers and soil, is one of the ways to increase crop yields and quality of agricultural products. Despite the importance of sunflower as one of the traditional crops of Ukraine, the technology of its cultivation in the Steppe zone today has many unsolved problems. Among the technical measures aimed at increasing the yield of sunflower, an important place is occupied by the choice of optimal rates of fertilizer application and micronutrient fertilization in critical periods of crop development. The purpose of the research was to establish the influence of fertilizers and selection of high-yielding hybrids (NK Diamantis, SI Kupava, NK Neoma) for specific soil and climatic conditions through the formation of their productivity. Field research was conducted during 2018–2019 on typical low-humus chernozems. As a result of research, it was found that the use of twice foliar fertilization on the background of the main fertilizer Ecoline Bor, Nertus Bor, Bast Bor in phase 4 and 8 leaves of 1 L_ha stimulated the formation of leaf surface, contributed to the accumulation of dry matter and high yields sunflower hybrids. Maximum indicators of the leaf surface area were formed in the flowering phase of sunflower plants, which under the influence of fertilizer variants changed in the following range: in plants of the hybrid NK Diamantis from 37.6 to 48.7 thousand m2_ha, SI Kupava was 41.1 - 52.39 thousand m2_ha, NK Neoma - 36.5- 47.6 thousand m2_ha. The highest indicator of leaf area was formed by plants of the SI Kupava hybrid on the variant with application of N36P56K108S28 + N23 + Ecoline Bor ”( 4 and 8 leaves), which amounted to 52.39 thousand m2_ha.


Author(s):  
А.В. Терешкин ◽  
А.Л. Калмыкова ◽  
Т.А. Андрушко

Вертикальное озеленение с участием различных видов лиан в современных условиях имеет важное эстетическое и санитарно-гигиеническое значение. Особо актуально решение вопросов обогащения флоры городских территорий лианами в степных районах в связи с бедным видовым составом и резким ухудшением экологической ситуации. Объектами исследований являлись 7 видов лиан, различных жизненных форм (однолетние, многолетние), произрастающие в населенных пунктах Саратовской области (Аткарск, Саратов). Цель исследований – изучение эколого-биологических особенностей и мелиоративных свойств лиан и выявление перспектив их использования в вертикальном озеленении селитебных территорий Саратовской области. В ходе исследования видового состава, были выявлены наиболее популярные виды однолетних лиан: ипомея красно-голубая (Ipomea tricolor (L.) Roth) и ипомея пурпурная (Ipomea purpurea (L.) Roth), горошек душистый (Lathyrus edoratus L.), настурция (Tropacolum peregrinum L.) и фасоль огненно-красная (Phaseolus coccineus). Большинство (70%) из них произрастают в местах ограниченного пользования. Изученные виды лиан в исследуемых регионах достигают средних природных показателей (при наличии надлежащего ухода), обладают хорошими показателями жизненного состояния, обильно цветут и плодоносят. При воздействии токсикантами различной концентрации на листовые пластинки лиан установлено их степень устойчивости. Выявлено, что однолетние лианы лучше использовать в декоративных целях, а не в санитарно-гигиенических. Сравнительная оценка однолетних видов с многолетними лианами (девичий виноград пятилисточковый и клематис тангутский) показывает устойчивость многолетних видов (в среднем на 3 балла - 40%). Разработаны варианты декоративных композиций с участием травянистых лиан. По степени декоративности выделены однолетние лианы – Ipomea tricolor, I. purpurea (37 – 41 балл), средней степенью отличаются – Lathyrus edoratus (33 балла), Tropacolum peregrinum (30 баллов) и Phaseolus coccineus (20 – 27 баллов). Преимущество многолетних лиан заключается в их устойчивости к резким изменениям климатических условий (на 40 %) по сравнению с однолетними формами. Поэтому они более предпочтительны для озеленения городской среды. Для усиления декоративного эффекта в сезонном аспекте рекомендуются сочетать расширение видового и формового разнообразия растений (многолетние и однолетние лианы, древесно-кустарниковая, цветочная растительность). Установлено, что природно-климатические условия зоны степи и лесостепи в пределах Саратовской области являются достаточно благоприятными для нормального роста и развития древесно-кустарниковой растительности, в том числе травянистых лиан. Таким образом, обоснованное применение древесных лиан в комплексе с традиционными видами насаждений позволит создать комфортные условия проживания населения, регулировать оптимальный температурный баланс и создавать благоприятные микроклиматические условия. Vertical gardening with different types of vines in modern conditions is important aesthetic and sanitary-hygienic value. It is especially important to address the issues of enrichment of the flora of urban areas with vines in the steppe regions due to poor species composition and a sharp deterioration of the ecological situation. The objects of research were 7 species of lianas, various life forms (annual, perennial), growing in the settlements of the Saratov region (Atkarsk, Saratov). The aim of the research is to study the ecological and biological features and reclamation properties of vines and identify the prospects for their use in vertical gardening residential areas of the Saratov region. In the study, species composition was the most popular species of annual vines: morning glory red-blue (Ipomea tricolor (L.) Roth) and purple morning glory (Ipomea purpurea (L.) Roth), the fragrant pea (Lathyrus edoratus L.), nasturtium (Tropacolum peregrinum L.) and runner beans (Phaseolus coccineus). Most (70%) of them grow in restricted areas. Studied species of vines in the study regions reach average natural performance (with proper care), have good indicators of vital condition, bloom abundantly and bear fruit. When exposed to toxicants of different concentrations on the leaf blades of vines established their degree of stability. It was revealed that the annual vines are better used for decorative purposes, and not in the sanitary-hygienic. A comparative assessment of annual species with perennial vines (maiden grapes and clematis Tangut) shows the stability of perennial species (an average of 3 points-40%). The options and decorative compositions with the participation of herbaceous vines. According to the degree of decoration of the allocated annual vine – Ipomea tricolor, I. purpurea (37 – 41 points), the average degree of differ – Lathyrus edoratus (33 points), Tropacolum peregrinum (30 points) and Phaseolus coccineus (20 to 27 points). The advantage of perennial vines is their resistance to sudden changes in climatic conditions (40 %) compared to annual forms. Therefore, they are more preferable for greening the urban environment. To enhance the decorative effect in the seasonal aspect, it is recommended to combine the expansion of species and form diversity of plants (perennial and annual lianas, tree and shrub, floral vegetation). It is established that the climatic conditions of the steppe and forest-steppe zone within the Saratov region are quite favorable for the normal growth and development of tree and shrub vegetation, including herbaceous lianas. Thus, the reasonable use of wood vines in combination with traditional types of plantings will create comfortable living conditions for the population, regulate the optimal temperature balance and create favorable microclimatic conditions.


2020 ◽  
Vol 62 ◽  
pp. 39-47
Author(s):  
A. I. Lokhova ◽  
E. Z. Savin ◽  
A. M. Rusanov ◽  
A. A. Mushinskiy

The article presents the results of studying the diversity of pear rootstock forms in terms of yield and seed productivity. The research was carried out at the experimental sites of the Orenburg Experimental Station of Horticulture and Viticulture of AllRussian Horticultural Institute for Breeding, Agrotechnology and Nursery and the Botanical Garden of the Orenburg State University in 2017-2019, in typical soil and climatic conditions of the Orenburg city. The purpose of the study is to identify pear rootstock forms characterized by high yield and stable seed productivity for use in the future as a seed rootstock. During the research, 15 pear accessions were studied; the planting scheme was 6x4 m. As a result of research, it was found that the rootstock form Temno-zelenaya is characterized by a high yield (40 kg/tree). High seed productivity of more than 6 seeds in one fruit was observed in samples: Vernaya (6.0-6.5 pcs.), SK-1, SK-3 (6.1-7.8 pcs.), SK-2 (7.0-7.5 pcs.), Chang Bai Li (7.4-7.7 pcs.), Semennaya 214 (7.5-7.8 pcs.). It was revealed that the Xiao he Bai Li variety is characterized by the maximum weight of 1000 seeds (65.2 g). Analysis of accessions by seed yield established that a consistently high yield is observed in the varieties Chang Bai Li (2.5-4.2 %), Vernaya (3.96-4.18 %) and forms SK-1 (2.0-3.25%), SK-2 (2.25-2.75 %), SK-3 (1.43-4.0 %). Pear rootstock forms Chang Bai Li, Vernaya, Semennaya 214, SK-1, SK-2, SK-3 were identifi ed, which can be recommended for production testing as seed pear rootstocks for the conditions of the steppe zone of the Southern Urals.


2016 ◽  
Vol 121 ◽  
pp. 420-428 ◽  
Author(s):  
André L. Johann ◽  
Augusto G. de Araújo ◽  
Hevandro C. Delalibera ◽  
André R. Hirakawa

Sign in / Sign up

Export Citation Format

Share Document