scholarly journals Biotesting of polymeric waste excluded from solid waste waste

Author(s):  
O. Malyshevska ◽  
◽  
V. Motriuk ◽  
M. Ionda ◽  
◽  
...  

Introduction. Annually, the volume of accumulated polymers in landfills in Ukraine is growing by more than 1 million tons, but the volume of recycled polymer packaging over the past ten years has not exceeded 3%. The goal is to establish the degree of toxicological impact on biosphere objects of polymers extracted from solid waste, to assess the safety of using household polymer waste as a secondary raw material for further processing. The task is to establish the degree of biological and toxicological safety of polymer wastes extracted from solid waste. Methods and techniques: toxicological - determination of water toxicity on acute Daphnia magna according to DSTU 4173: 2003 (ISO 6341: 1996, MOD) and chronic according to DSTU 4166: 2003 (ISO 10706: 2000, MOD), and Paramecium caudatum ciliates, soil microflora reactions (saprotrophic soil bacteria CFU / g) according to MR 2609-82, the assessment of phytotoxic effects on higher plants was carried out by vegetation methods according to ISO 17402-2008, ISO 17126-2005a, ISO 22030: 2005b, ISO 11269 -1:2012a. Results. The research results show that aqueous extracts from waste polymers extracted from solid waste and their mixture do not have a pronounced toxic effect on aquatic organisms. There is no significant effect on soil bacteria. The study of the effect of polymer waste on seed germination did not reveal phytotoxic effects for any crop. A slight phytotoxic effect was observed during the study of PVC and PS waste. Wheat and mustard were the most sensitive. The level of phytotoxic effect was within acceptable limits and did not exceed 5.67%. Evaluation of phytotoxic effects on stem length showed the presence of effects from all processed products except PVC. The impact, characterized as weak, ranged from - 2.06% (PP) to - 13.27% (PS). The effect on root length was found for samples with PS waste (-7.23%), which was characterized as weak and PVC (-43.52%) - medium. Watercress and mustard were the most sensitive plants to the effects of polymer waste. Conclusions. The studied samples of polymer waste do not show hygienically significant toxic effects on water and soil test objects, even in concentrations of 1: 1, so the impact on the above test organisms polymer waste removed from solid waste is classified as hazard class 4. According to the assessment of phytotoxic effect, polymer waste removed from solid waste is classified as hazard class 4, except for PVC - hazard class 3.

2020 ◽  
Vol 24 (7) ◽  
pp. 18-23
Author(s):  
S.V. Lukashov ◽  
V.P. Gamazin ◽  
M.V. Khokhlova

The problems of utilization of solid municipal waste are considered, specific methods for its solution are proposed. It was established that one of the main directions of the disposal of solid municipal waste should be considered as their burning. The heat balance of the combustion of wood waste, rubber waste, polymer waste (plastics, tires), agricultural waste. Some specific parameters are determined, such as specific heat of combustion, temperature of complete combustion. It is shown that solid municipal waste should be incinerated using plants for their autothermal processing. The use of the OS 125-1000 series of heating systems as a mobile unit for burning the heating system is justified. The impact of the proposed technology for the disposal of municipal solid waste on the environment is assessed.


2014 ◽  
Vol 675-677 ◽  
pp. 761-769 ◽  
Author(s):  
Maria G. Ryzhakova ◽  
Vladimir I. Maslikov ◽  
Alexander N. Chusov ◽  
Vadim V. Korablev

In the last decade the problem of household hazardous waste (HHW) is becoming increasingly important, in connection with expansion of the assortment and increase of the total number. The household hazardous waste include: mercury-containing fluorescent lamps and other devices, batteries, electrical and electronic devices (waste electrical and electronic equipment), remnants of household chemicals and medicines, and others.Such waste contains in its chemical composition of hazardous substances, which have negative impact on the environment and human health. If dangerous components are not allocated from the overall flow of low-hazardous municipal solid waste (MSW), in the processing or disposal in landfills, they begin to have a negative impact on the environment, which tends to accumulate.The article presents the assessment of the hazard class of solid waste, containing a specified number of HHW (according to various data about their morphological composition), using calculation methods approved in the Russian Federation. The analysis of the impact of HHW in the composition of MSW on the environment during the implementation of the main ways of MSW treatment is performed. A brief review of modern technologies of collection and processing of HHW in Russia and other countries is presented and recommendations are given.


2020 ◽  
Vol 2 (7) ◽  
pp. 91-99
Author(s):  
E. V. KOSTYRIN ◽  
◽  
M. S. SINODSKAYA ◽  

The article analyzes the impact of certain factors on the volume of investments in the environment. Regression equations describing the relationship between the volume of investment in the environment and each of the influencing factors are constructed, the coefficients of the Pearson pair correlation between the dependent variable and the influencing factors, as well as pairwise between the influencing factors, are calculated. The average approximation error for each regression equation is determined. A correlation matrix is constructed and a conclusion is made. The developed econometric model is implemented in the program of separate collection of municipal solid waste (MSW) in Moscow. The efficiency of the model of investment management in the environment is evaluated on the example of the growth of planned investments in the activities of companies specializing in the export and processing of solid waste.


Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 372
Author(s):  
Ekaterina Sukhova ◽  
Elena Akinchits ◽  
Sergey V. Gudkov ◽  
Roman Y. Pishchalnikov ◽  
Vladimir Vodeneev ◽  
...  

Variation potential (VP) is an important long-distance electrical signal in higher plants that is induced by local damages, influences numerous physiological processes, and participates in plant adaptation to stressors. The transmission of increased hydraulic pressure through xylem vessels is the probable mechanism of VP propagation in plants; however, the rates of the pressure transmission and VP propagation can strongly vary. We analyzed this problem on the basis of a simple mathematical model of the pressure distribution along a xylem vessel, which was approximated by a tube with a pressure gradient. It is assumed that the VP is initiated if the integral over pressure is more than a threshold one, taking into account that the pressure is transiently increased in the initial point of the tube and is kept constant in the terminal point. It was shown that this simple model can well describe the parameters of VP propagation in higher plants, including the increase in time before VP initiation and the decrease in the rate of VP propagation with an increase in the distance from the zone of damage. Considering three types of the pressure dynamics, our model predicts that the velocity of VP propagation can be stimulated by an increase in the length of a plant shoot and also depends on pressure dynamics in the damaged zone. Our results theoretically support the hypothesis about the impact of pressure variations in xylem vessels on VP propagation.


Foods ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 485
Author(s):  
Vera Schmid ◽  
Antje Trabert ◽  
Judith (Schäfer) Keller ◽  
Mirko Bunzel ◽  
Heike P. Karbstein ◽  
...  

Food by-products can be used as natural and sustainable food ingredients. However, a modification is needed to improve the technofunctional properties according to the specific needs of designated applications. A lab-scale twin-screw extruder was used to process enzymatically treated apple pomace from commercial fruit juice production. To vary the range of the thermomechanical treatment, various screw speeds (200, 600, 1000 min−1), and screw configurations were applied to the raw material. Detailed chemical and functional analyses were performed to develop a comprehensive understanding of the impact of the extrusion processing on apple pomace composition and technofunctional properties as well as structures of individual polymers. Extrusion at moderate thermomechanical conditions increased the water absorption, swelling, and viscosity of the material. An increase in thermomechanical stress resulted in a higher water solubility index, but negatively affected the water absorption index, viscosity, and swelling. Scanning electron microscopy showed an extrusion-processing-related disruption of the cell wall. Dietary fiber analysis revealed an increase of soluble dietary fiber from 12.6 to 17.2 g/100 g dry matter at maximum thermo-mechanical treatment. Dietary fiber polysaccharide analysis demonstrated compositional changes, mainly in the insoluble dietary fiber fraction. In short, pectin polysaccharides seem to be susceptible to thermo-mechanical stress, especially arabinans as neutral side chains of rhamnogalacturonan I.


Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 276
Author(s):  
Hang Jia ◽  
Haoxi Ben ◽  
Fengze Wu

Biochar is generally accepted and increasingly valued in scientific circles as solid products in the thermochemical conversion of biomass, mainly because of its rich carbon content. The purpose of this research is to investigate the impact of biochar from different sources on wheat growth. In particular, this work focused on the effect of different preparation methods and raw material of biochar on the growth of wheat and aim to find a potential soil substitute that can be used for crop cultivation. Two synthetic methods were evaluated: hydrothermal conversion and pyrolysis. The characterization of biochar was determined to explore the impact of its microstructure on wheat growth. The results show that the yield of biochar produced from high-pressure reactor is significantly higher than that obtained by using microwave reactor. For example, the biochar yield obtained through the former is about six times that of the latter when using steamed bread cooked as biomass raw material. In addition, the growth trend of wheat indicates that biochar has different promoting effects on the growth of wheat in its weight and height. The pyrolyzed carbon is more suitable for wheat growth and is even more effective than soil, indicating that pyrolyzed biochar has more potential to be an alternative soil in the future. Moreover, this research tries to explore the reasons that affect crop growth by characterizing biochar (including scanning electron microscopy (SEM), biofilm electrostatic test (BET) and Fourier transform infrared (FT-IR)). The results indicate that the biochar containing more pits and less hydroxyl functional are more suitable for storing moisture, which is one of the significant factors in the growth of crops. This study provides evidence of the effects of biochar on crop growth, both in terms of microstructure and macroscopic growth trends, which provides significant benefits for biochar to grow crops or plants.


Urban Science ◽  
2021 ◽  
Vol 5 (3) ◽  
pp. 54
Author(s):  
Yuejuan Yang ◽  
Hao Zhang ◽  
Xinquan Zhao ◽  
Zhizhang Chen ◽  
Aiguo Wang ◽  
...  

Ecosystem services are the material basis of economic and social development, and play essential roles in the sustainable development of ecosystems. Urbanization can remarkably alter the provision of ecosystem services. Most studies in this area have focused on densely populated metropolises with poor ecological environments, while comparatively few studies have focused on cities with low ecological pressures. Therefore, to avoid continuing to engage in the repetitive pattern of destroying first and rehabilitating later, quantitative analyses of urbanization and ecosystem services should be carried out in representative cities. In this study, based on partial least squares-discriminant analysis, kernel density estimation, and correlation analysis, we quantitatively evaluated the impact of urbanization on ecosystem services in Weifang city. The Data Center for Resources and Environmental Sciences at the Chinese Academy of Sciences and the Institute of Geographic Sciences and Natural Resources Research provided remote sensing data on land use, the gross domestic production (GDP), population data, and ecosystem services. The results were as follows: (1) The variation in population, GDP, and built-up areas consistently increased throughout the study period, whereas the ecosystem service values (ESVs) decreased; (2) food production, raw material production, nutrient cycle maintenance, and soil conservation were decisive ecosystem services that led to vast reductions in ESVs during the process of urbanization; and (3) the negative correlation coefficient between built-up areas and ecosystem services was greater than that between the population or GDP and ecosystem services, which indicated that the impacts of population and economic urbanization on ecosystem services lagged behind the impact of land urbanization. This study provides references for fully recognizing the ecological effects of urbanization, and make suggestions regarding the application of ecosystem services in sustainable development.


PeerJ ◽  
2019 ◽  
Vol 6 ◽  
pp. e6186 ◽  
Author(s):  
Ting-Ting Jiang ◽  
Yan Liang ◽  
Xiang Zhou ◽  
Zi-Wei Shi ◽  
Zhi-Jun Xin

Background Sweet sorghum bagasse (SSB), comprising both a dermal layer and pith, is a solid waste generated by agricultural activities. Open burning was previously used to treat agricultural solid waste but is harmful to the environment and human health. Recent reports showed that certain techniques can convert this agricultural waste into valuable products. While SSB has been considered an attractive raw material for sugar extraction and the production of value-added products, the pith root in the SSB can be difficult to process. Therefore, it is necessary to pretreat bagasse before conventional hydrolysis. Methods A thorough analysis and comparison of various pretreatment methods were conducted based on physicochemical and microscopic approaches. The responses of agricultural SSB stem pith with different particle sizes to pretreatment temperature, acid and alkali concentration and enzyme dosage were investigated to determine the optimal pretreatment. The integrated methods are beneficial to the utilization of carbohydrate-based and unknown compounds in agricultural solid waste. Results Acid (1.5−4.5%, v/v) and alkali (5−8%, w/v) reagents were used to collect cellulose from different meshes of pith at 25–100 °C. The results showed that the use of 100 mesh pith soaked in 8% (w/v) NaOH solution at 100 °C resulted in 32.47% ± 0.01% solid recovery. Follow-up fermentation with 3% (v/v) acid and 6.5% (w/v) alkali at 50 °C for enzymolysis was performed with the optimal enzyme ratio. An analysis of the surface topography and porosity before and after pretreatment showed that both the pore size of the pith and the amount of exposed cellulose increased as the mesh size increased. Interestingly, various compounds, including 42 compounds previously known to be present and 13 compounds not previously known to be present, were detected in the pretreatment liquid, while 10 types of monosaccharides, including D-glucose, D-xylose and D-arabinose, were found in the enzymatic solution. The total monosaccharide content of the pith was 149.48 ± 0.3 mg/g dry matter. Discussion An integrated technique for obtaining value-added products from sweet sorghum pith is presented in this work. Based on this technique, lignin and hemicellulose were effectively broken down, amorphous cellulose was obtained and all sugars in the sweet sorghum pith were hydrolysed into monosaccharides. A total of 42 compounds previously found in these materials, including alcohol, ester, acid, alkene, aldehyde ketone, alkene, phenolic and benzene ring compounds, were detected in the pretreatment pith. In addition, several compounds that had not been previously observed in these materials were found in the pretreatment solution. These findings will improve the transformation of lignocellulosic biomass into sugar to create a high-value-added coproduct during the integrated process and to maximize the potential utilization of agricultural waste in current biorefinery processing.


2020 ◽  
Vol 12 (24) ◽  
pp. 10454
Author(s):  
Katarína Teplická ◽  
Martin Straka

This article summarizes the arguments within the scientific discussion on the issue of using mining machines and their life cycle. The main goal of the article is to investigate the impact of a combination of mobile and stationary mining machines and their optimal distribution in the mining process to increase the efficiency of mining and processing of raw materials. The following methods of research were focused on the use of technical indicators for the valuation efficiency of the mining process: a simulation method was used for the distribution of mining machines, comparison analysis was used for the real and past state of mining machines, and a decision tree was used as managerial instrument for optimal alternatives of mining machines. The research empirically confirms and theoretically proves that optimal distribution of mining machines and machine parks is very important for mining companies. The benefit of this research for the mining company was the new location of the machines and the combination of stationary production lines and mobile equipment. The optimal layout of the machines reduced the number of conveyor belts and improved the transfer of limestone processing to mobile devices, saving time, which was reflected in transport costs. The results can be useful for other mining companies seeking to create an optimal machine park.


Sign in / Sign up

Export Citation Format

Share Document