scholarly journals Overexpression of 14-3-3γ Induces the Migration and Invasion of Human Lung Adenocarcinoma A549 Cells

Author(s):  
Pritsana Raungrut ◽  
Nidanut Champoochana ◽  
Paramee Thongsuksai ◽  
Kamontip Promnares

Objective: 14-3-3 gamma (γ) is known to modulate the development and progression of many cancers. However, the evidence in lung cancer is still unclear. In this study, effects of 14-3-3γ on tumor cell migration and invasion were investigated. Material and Methods: A 14-3-3γ expression vector was made and transfected into A549 cells. In-vitro scratch assay and transwell assay were applied to assess migration and invasion, respectively. Western blotting was used to detect expression of proteins related to epithelial–mesenchymal transition.Results: Closing rate of scratch wounds, both in classical and non-classical scratch assay, was significantly increased in 14-3-3γ-overexpressing cells in comparison to the controls. Similarly, by transwell assay, a significant increase in the invasion and migration was shown in the 14-3-3γ-overexpressing cells in comparison to the null vector cells, by approximately 79.2% (p-value=0.002) and 131.2% (p-value<0.001), respectively. In addition, increased 14-3-3γ expression resulted in a significant increase of β-catenin and Snail but not for E-cadherin and vimentin. Conclusion: The study demonstrates the role of 14-3-3γ protein on lung cancer progression via migration and invasion processes, possibly providing a new targeted therapy for non-small cell lung cancer.

2020 ◽  
Author(s):  
Lili Liu ◽  
Zhiying Xu ◽  
Binbin Yu ◽  
Li Tao ◽  
Ying Cao

Abstract Background To investigate the influences of berbamine (BBM) on the cell viability, proliferation, and migration of A549 cells in vitro and in vivo, and explore the possible mechanisms.MethodsAfter the A549 cells were treated with BBM, the cell viability and proliferation of the cancer cells were detected by MTT assay, EdU assay, and colony formation assay. Migration and invasion of cancer cells were illustrated through wound scratch assay and transwell assay. Apoptosis of cancer cells was evaluated by trypan blue dye exclusion assay and elisa assay. Beside, the expression of PI3K/Akt signal pathway-related proteins and c-Maf were detected employing western blotting assay. Xenografted model of NSCLC was used to detect the effect of BBM on tumor growth and metastasis in vivo.ResultsMTT assay showed that BBM inhibited the viability of A549 cells in a concentration-dependent manner and time-dependent manner. The results from the colony formation assay and EdU assay revealed that BBM (10 µM) could significantly inhibit the proliferation of A549 cells (P<0.001). And BBM (10 µM) significantly inhibited the migration and invasion in the wound scratch assay and transwell assay (P<0.05). Trypan blue assay and elisa assay indicated that BBM (20 µM) significantly induced apoptosis of A549 cells. The nude mice assay manifested the tumor volume was significantly shrank by BBM (20 mg/kg) (P<0.05). Western blotting assay showed that the PI3K/Akt and MDM2-p53 signaling pathways were inhibited by BBM, and the expression of c-Maf was downregulated by BBM. ConclusionsBBM could inhibit the proliferation and metastasis, and induce apoptosis of A549 cells in vitro and in vivo, these effects may be achieved by reducing the expression of c-Maf and regulating the PI3K/Akt and MDM2-p53 pathways.


Author(s):  
Jiongwei Pan ◽  
Gang Huang ◽  
Zhangyong Yin ◽  
Xiaoping Cai ◽  
Enhui Gong ◽  
...  

AbstractSignificantly high-expressed circFLNA has been found in various cancer cell lines, but not in lung cancer. Therefore, this study aimed to explore the role of circFLNA in the progression of lung cancer. The target gene of circFLNA was determined by bioinformatics and luciferase reporter assay. Viability, proliferation, migration, and invasion of the transfected cells were detected by CCK-8, colony formation, wound-healing, and transwell assays, respectively. A mouse subcutaneous xenotransplanted tumor model was established, and the expressions of circFLNA, miR-486-3p, XRCC1, CYP1A1, and related genes in the cancer cells and tissues were detected by RT-qPCR, Western blot, or immunohistochemistry. The current study found that miR-486-3p was low-expressed in lung cancer. MiR-486-3p, which has been found to target XRCC1 and CYP1A1, was regulated by circFLNA. CircFLNA was located in the cytoplasm and had a high expression in lung cancer cells. Cancer cell viability, proliferation, migration, and invasion were promoted by overexpressed circFLNA, XRCC1, and CYP1A1 but inhibited by miR-486-3p mimic and circFLNA knockdown. The weight of the xenotransplanted tumor was increased by circFLNA overexpression yet reduced by miR-486-3p mimic. Furthermore, miR-486-3p mimic reversed the effect of circFLNA overexpression on promoting lung cancer cells and tumors and regulating the expressions of miR-486-3p, XRCC1, CYP1A1, and metastasis/apoptosis/proliferation-related factors. However, overexpressed XRCC1 and CYP1A1 reversed the inhibitory effect of miR-486-3p mimic on cancer cells and tumors. In conclusion, circFLNA acted as a sponge of miR-486-3p to promote the proliferation, migration, and invasion of lung cancer cells in vitro and in vivo by regulating XRCC1 and CYP1A1.


Biomedicines ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 954
Author(s):  
Ye-Ram Kim ◽  
Ah-Reum Han ◽  
Jin-Baek Kim ◽  
Chan-Hun Jung

The use of ionizing radiation (IR) during radiotherapy can induce malignant effects, such as metastasis, which contribute to poor prognoses in lung cancer patients. Here, we explored the ability of dendrobine, a plant-derived alkaloid from Dendrobium nobile, to improve the efficacy of radiotherapy in non-small cell lung cancer (NSCLC). We employed Western blotting, quantitative real-time (qRT)-PCR, transwell migration assays, and wound-healing assays to determine the effects of dendrobine on the migration and invasion of A549 lung cancer cells in vitro. Dendrobine (5 mm) inhibited γ-irradiation-induced migration and invasion of A549 cells by suppressing sulfatase2 (SULF2) expression, thus inhibiting IR-induced signaling. To investigate the inhibitory effects of dendrobine in vivo, we established a mouse model of IR-induced metastasis by injecting BALB/c nude mice with γ-irradiated A549 cells via the tail vein. As expected, injection with γ-irradiated cells increased the number of pulmonary metastatic nodules in mice (0 Gy/DPBS, 9.8 ± 1.77; 2 Gy/DPBS, 20.87 ± 1.42), which was significantly reduced with dendrobine treatment (2 Gy/Dendrobine, 10.87 ± 0.71), by prevention of IR-induced signaling. Together, these findings demonstrate that dendrobine exerts inhibitory effects against γ-irradiation-induced invasion and metastasis in NSCLC cells in vitro and in vivo at non cytotoxic concentrations. Thus, dendrobine could serve as a therapeutic enhancer to overcome the malignant effects of radiation therapy in patients with NSCLC.


2018 ◽  
Vol 243 (9) ◽  
pp. 739-748 ◽  
Author(s):  
Sei Won Kim ◽  
In Kyoung Kim ◽  
Jick Hwan Ha ◽  
Chang Dong Yeo ◽  
Hyeon Hui Kang ◽  
...  

Hypoxia is a critical characteristic of solid tumors with respect to cancer cell survival, angiogenesis, and metastasis. Hyperoxic treatment has been attempted to reverse hypoxia by enhancing the amount of dissolved oxygen in the plasma. In this study, we evaluated the effects of normobaric hyperoxia on the progression of lung cancer to determine whether oxygen toxicity can be used in cancer therapy. Following a tail vein injection of the Lewis lung carcinoma cells, C57BL/6J mice were exposed to a 24-h normobaric hyperoxia/normoxia cycle for two weeks. In addition, A549 lung cancer cells were incubated in a normobaric hyperoxia chamber for a 24-h period. As a result, the size and number of tumors in the lung decreased significantly with exposure to normobaric hyperoxia in the mouse model. Cell viability, colony-forming ability, migration, and invasion all decreased significantly in A549 cells exposed to normobaric hyperoxia and the normal control group exposed to normobaric hyperoxia showed no significant damage. Oxidative stress was more prominent with exposure to normobaric hyperoxia in cancer cells. A549 cells exposed to normobaric hyperoxia showed a significantly higher cell apoptosis ratio compared with A549 cells without normobaric hyperoxia exposure and normal human lung cells (BEAS-2B cells). The Bax/Bcl-2 mRNA expression ratio also increased significantly. Changes in the key regulators of apoptosis were similar between in vivo and in vitro conditions. The p-ERK level decreased, while the p-JNK level increased, after normobaric hyperoxia exposure in A549 cells. This study demonstrated the role of normobaric hyperoxia in inhibiting lung cancer. Normal tissue and cells showed no significant hyperoxic damage in our experimental setting. The anti-tumor effect of normobaric hyperoxia may due to the increased reactive oxygen species activity and apoptosis, which is related to the mitogen-activated protein kinase pathway. Impact statement Normobaric hyperoxia (NBO) is a feasible therapy for cancer with a low complication rate. Although NBO may be beneficial in cancer treatment, very few studies have been conducted; thus, the evidence is thin. This is the first study to clearly demonstrate morphological changes in lung cancer with NBO exposure and to investigate the underlying mechanisms both in vivo and in vitro. This study will arouse interest in NBO treatment and promote further research.


2021 ◽  
Vol 12 ◽  
Author(s):  
Wang Sheng ◽  
Weixi Guo ◽  
Fang Lu ◽  
Hongming Liu ◽  
Rongmu Xia ◽  
...  

Lung cancer (LC) is a malignant tumor with the highest incidence and mortality rates worldwide. Linc00284, a long non-coding RNA, is a newly discovered regulator of LC. This study aimed to explore the role of Linc00284 in LC progression. Gene expression levels were detected by RT-qPCR and/or western blot analysis. Cell migratory and invasive capabilities were measured by wound healing and transwell assays. Subcutaneous xenograft models were constructed to examine tumor growth of LC cells. Data showed that Linc00284 was significantly upregulated in LC tissues compared to adjacent normal lung tissues and predicted poor prognosis in patients with LC. In vitro, Linc00284 was highly expressed in LC cells and was mainly localized in the cytoplasm. Mechanistically, Linc00284 directly bound to miR-205-3p, leading to the upregulation of c-Met expression. A significant negative correlation was observed between Linc00284 and miR-205-3p expression levels, and the Linc00284 level was positively correlated with the c-Met expression. Linc00284/miR-205-3p/c-Met regulatory axis promotes LC cell proliferation, migration, and invasion. Furthermore, the in vivo results indicated that Linc00284 knockdown markedly suppressed tumor growth. Taken together, these data suggest that Linc00284 facilitates LC progression by targeting the miR-205-3p/c-Met axis, which may be a potential target for LC treatment.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Lili Mao ◽  
Xu Ling ◽  
Ji Chen

Introduction. Studies have previously shown that Cyclin H (CCNH) is involved in the tumorigenesis and development of many cancers. The increasing research in CCNH is associated with the poor prognosis of most human cancers. Early diagnosis and clinical treatment are still the main challenges for lung cancer treatment. However, the exact role of CCNH in the tumorigenesis of lung cancer remains unclear. Methods. The Tumor Genome Atlas (TCGA) database and the Clinical Proteomics Tumor Analysis Association (CPTAC) database were analyzed to detect key genes that might play an important role in lung cancer. The biological functions of CCNH were further revealed through bioinformatics experiments. The Kaplan-Meier method was applied to explore the relationship between CCNH expression and prognosis. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was used to detect the expression levels of CCNH in 6 lung cancer tissues and 3 cancer cell lines. The effect of CCNH expression on lung cancer progression was studied by in vitro functional experiments. Results. Database analysis screened out candidate oncogenes, and CCNH was of great significance to the tumorigenesis of lung cancer. The higher the expression of CCNH was, the lower the survival rate of lung cancer patients were. The qRT-PCR data illustrated that the CCNH expression level was largely increased in lung cancer tissues and cells. The reduction of CCNH inhibited cell proliferation, invasion, and migration. Conclusion. CCNH was related to poor prognosis, suggesting that CCNH regulated the tumorigenesis and development of lung cancer. Our study suggested that CCNH was a promising biomarker and target in the treatment of lung cancer.


2020 ◽  
Author(s):  
Wei Zhang ◽  
Ganzhu Feng

Objectives: Lung cancer has been reported as the leading cause of cancer-associated death in humans, and its incidence continues to increase in the world. A growing number of studies have shown that dysregulated genes are associated with the occurrence and poor prognosis of a variety of tumors, including NSCLC. C1q/tumor necrosis factor-related protein 6 (C1QTNF6), a member of the CTRP family, has been revealed to play a role in carcinogenesis and cancer progression. Nevertheless, the effects and mechanisms of C1QTNF6 in NSCLC remain unrevealed. Materials and methods: MTT and colony formation, flow cytometric and transwell assays were performed to explore the cell function. RT-PCR and western blot were used to analyze the mRNA and protein expression. Results: In this study, we found that C1QTNF6 significantly promoted the proliferation of SPCA1 and A549 cells by MTT and colony formation assays. In addition, downregulation of C1QTNF6 weakened the tumor growth in vivo. Besides, C1QTNF6 remarkably reduced apoptosis by flow cytometric analysis and TUNEL assay. Furthermore, the capability of migration and invasion was obviously enhanced when C1QTNF6 overexpression. Conclusion: Overall, our results demonstrated that inhibition of C1QTNF6 attenuated cell proliferation, migration, invasion and promoted apoptosis in vitro and in vivo of NSCLC. Based on the above results, our study provided us with a new and key perspective in understanding and treating NSCLC.


Author(s):  
Xianxiong Ma ◽  
Hengyu Chen ◽  
Lei Li ◽  
Feng Yang ◽  
Chuanqing Wu ◽  
...  

Abstract Background Circular RNAs (circRNAs) are a class of non-coding RNA that play critical roles in the development and pathogenesis of various cancers. The circRNA circGSK3B (hsa_circ_0003763) has been shown to enhance cell proliferation, migration, and invasion in hepatocellular carcinoma. However, the specific functions and underlying mechanistic involvement of circGSK3B in gastric cancer (GC) have not yet been explored. Our study aimed to investigate the effect of circGSK3B on the progression of GC and to identify any potential mechanisms underlying this process. Methods CircRNA datasets associated with GC were obtained from the PubMed, GEO, and ArrayExpress databases, and circRNAs were validated via RT-qPCR and Sanger sequencing. Biotin-labeled RNA pull-down, mass spectrometry, RNA immunoprecipitation, and in vitro binding assays were employed to determine proteins demonstrating interactions with circGSK3B. Gene expression regulation was assessed through RT-qPCR, chromatin immunoprecipitation, and western blot assays. Gain- and loss-of-function assays were used to analyze any effects of circGSK3B and its partner regulatory molecule (EZH2) on the proliferation, invasion, and migration abilities of GC cells both in vitro and in vivo. Results CircGSK3B was mainly identified in the nucleus. This circRNA was present at a reduced concentration in GC tissues and cell lines. Overexpression of circGSK3B was shown to inhibit the growth, invasion, and metastasis of GC cells both in vitro and in vivo. Mechanistically, circGSK3B directly interacted with EZH2, acting to suppress the binding of EZH2 and H3K27me3 to the RORA promoter, and leading to an elevation in RORA expression and ultimately the suppression of GC progression. Conclusions CircGSK3B acts as a tumor suppressor, reducing EZH2 trans-inhibition and GC progression. This demonstrates the potential use of this RNA as a therapeutic target for GC.


Author(s):  
Jie Zeng ◽  
Xuan Li ◽  
Long Liang ◽  
Hongxia Duan ◽  
Shuanshuan Xie ◽  
...  

Abstract Purpose Cyclase-associated protein 1 (CAP1) is a ubiquitous protein which regulates actin dynamics. Previous studies have shown that S308 and S310 are the two major phosphorylated sites in human CAP1. In the present study, we aimed to investigate the role of CAP1 phosphorylation in lung cancer. Methods Massive bioinformatics analysis was applied to determine CAP1’s role in different cancers and especially in lung cancer. Lung cancer patients’ serum and tissue were collected and analyzed in consideration of clinical background. CAP1 shRNA-lentivirus and siRNA were applied to CAP1 gene knockdown, and plasmids were constructed for CAP1 phosphorylation and de-phosphorylation. Microarray analysis was used for CAP1-associated difference analysis. Both in vitro and in vivo experiments were performed to investigate the roles of CAP1 phosphorylation and de-phosphorylation in lung cancer A549 cells. Results CAP1 is a kind of cancer-related protein. Its mRNA was overexpressed in most types of cancer tissues when compared with normal tissues. CAP1 high expression correlated with poor prognosis. Our results showed that serum CAP1 protein concentrations were significantly upregulated in non-small cell lung cancer (NSCLC) patients when compared with the healthy control group, higher serum CAP1 protein concentration correlated with shorter overall survival (OS) in NSCLC patients, and higher pCAP1 and CAP1 protein level were observed in lung cancer patients’ tumor tissue compared with adjacent normal tissue. Knockdown CAP1 in A549 cells can inhibit proliferation and migration, and the effect is validated in H1975 cells. It can also lead to an increase ratio of F-actin/G-actin. In addition, phosphorylated S308 and S310 in CAP1 promoted lung cancer cell proliferation, migration, and metastasis both in vitro and in vivo. When de-phosphorylated, these two sites in CAP1 showed the opposite effect. Phosphorylation of CAP1 can promote epithelial–mesenchymal transition (EMT). Conclusion These findings indicated that CAP1 phosphorylation can promote lung cancer proliferation, migration, and invasion. Phosphorylation sites of CAP1 might be a novel target for lung cancer treatment.


Author(s):  
Sara Marchetti ◽  
Rossella Bengalli ◽  
Pamela Floris ◽  
Anita Colombo ◽  
Paride Mantecca

AbstractCombustion-derived particles (CDPs), due to the presence in their composition of several toxic and carcinogenic chemical compounds, such as polycyclic aromatic hydrocarbons (PAHs) and metals, are linked to several respiratory diseases, including lung cancer. Epithelial-to-mesenchymal transition (EMT) is a crucial step in lung cancer progression, involving several morphological and phenotypical changes. The study aims to investigate how exposure to CDPs from different biomass sources might be involved in cancer development, focusing mainly on the effects linked to EMT and invasion on human A549 lung cells. Biomass combustion-derived particles (BCDPs) were collected from a stove fuelled with pellet, charcoal or wood, respectively. A time course and dose response evaluation on cell viability and pro-inflammatory response was performed to select the optimal conditions for EMT-related studies. A significant release of IL-8 was found after 72 h of exposure to 2.5 μg/cm2 BCDPs. The EMT activation was then examined by evaluating the expression of some typical markers, such as E-cadherin and N-cadherin, and the possible enhanced migration and invasiveness. Sub-acute exposure revealed that BCDPs differentially modulated cell viability, migration and invasion, as well as the expression of proteins linked to EMT. Results showed a reduction in the epithelial marker E-cadherin and a parallel increase in the mesenchymal markers N-cadherin, mainly after exposure to charcoal and wood. Migration and invasion were also increased. In conclusion, our results suggest that BCDPs with a higher content of organic compounds (e.g. PAHs) in their chemical composition might play a crucial role in inducing pro-carcinogenic effects on epithelial cells.


Sign in / Sign up

Export Citation Format

Share Document