NEMATODOSES OF RACONAL DOGS OF CELL CONTENT, THEIR DIAGNOSTICS AND PREVENTION

Author(s):  
L.A. Napisanova ◽  
◽  
O.B. Zhdanova ◽  
I.I. Okulova ◽  
O.V. Chasovskikh ◽  
...  
Keyword(s):  
2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Masato Kanzaki ◽  
Ryo Takagi ◽  
Kaoru Washio ◽  
Mami Kokubo ◽  
Shota Mitsuboshi ◽  
...  

AbstractLung air leaks (LALs) due to visceral pleura injury during surgery are a difficult-to-avoid complication in thoracic surgery (TS). Reliable LAL closure is an important patient management issue after TS. We demonstrated both safeties of transplantation of a cultured human autologous dermal fibroblast sheet (DFS) to LALs. From May 2016 to March 2018, five patients who underwent thoracoscopic lung resection met all the inclusion criteria. Skin biopsies were acquired from each patient to source autologous dermal cells for DFS fabrication. During the primary culture, fibroblasts migrated from the dermal tissue pieces and proliferated to form cell monolayers. These fibroblasts were subcultured to confluence. Transplantable DFSs were fabricated from these subcultured fibroblasts that were trypsinized and seeded onto temperature-responsive culture dishes. After 10 days of fabrication culture, intact patient-specific DFS were harvested. DFSs were analyzed for fibroblast cell content and tissue contaminants prior to application. For closing intraoperative LAL, mean number of transplanted autologous DFS per patient was 6 ± 2 sheets. Mean chest drainage duration was 5.0 ± 4.8 days. The two patients with major LAL had a drainage duration of more than 7 days. All patients currently have no LAL recurrence after discharge. DFSs effectively maintain LAL closure via remodeling of the deposited extracellular matrix. The use of autologous DFSs to permanently close air leaks using a patient-derived source is expected to reduce surgical complications during high-risk lung resections.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Aisajan Mamat ◽  
Kuerban Tusong ◽  
Juan Xu ◽  
Peng Yan ◽  
Chuang Mei ◽  
...  

AbstractKorla pear (Pyrus sinkiangensis Yü) is a landrace selected from a hybrid pear species in the Xinjiang Autonomous Region in China. In recent years, pericarp roughening has been one of the major factors that adversely affects fruit quality. Compared with regular fruits, rough-skin fruits have a greater stone cell content. Stone cells compose sclerenchyma tissue that is formed by secondary thickening of parenchyma cell walls. In this work, we determined the main components of stone cells by isolating them from the pulp of rough-skin fruits at the ripening stage. Stone cell staining and apoptosis detection were then performed on fruit samples that were collected at three different developmental stages (20, 50 and 80 days after flowering (DAF)) representing the prime, late and stationary stages of stone cell differentiation, respectively. The same batches of samples were used for parallel transcriptomic and proteomic analysis to identify candidate genes and proteins that are related to SCW biogenesis in Korla pear fruits. The results showed that stone cells are mainly composed of cellulose (52%), hemicellulose (23%), lignin (20%) and a small amount of polysaccharides (3%). The periods of stone cell differentiation and cell apoptosis were synchronous and primarily occurred from 0 to 50 DAF. The stone cell components increased abundantly at 20 DAF but then decreased gradually. A total of 24,268 differentially expressed genes (DEGs) and 1011 differentially accumulated proteins (DAPs) were identified from the transcriptomic and proteomic data, respectively. We screened the DEGs and DAPs that were enriched in SCW-related pathways, including those associated with lignin biosynthesis (94 DEGs and 31 DAPs), cellulose and xylan biosynthesis (46 DEGs and 18 DAPs), S-adenosylmethionine (SAM) metabolic processes (10 DEGs and 3 DAPs), apoplastic ROS production (16 DEGs and 2 DAPs), and cell death (14 DEGs and 6 DAPs). Among the identified DEGs and DAPs, 63 significantly changed at both the transcript and protein levels during the experimental periods. In addition, the majority of these identified genes and proteins were expressed the most at the prime stage of stone cell differentiation, but their levels gradually decreased at the later stages.


2021 ◽  
Vol 22 (5) ◽  
pp. 2540
Author(s):  
Teresa Chioccarelli ◽  
Marina Migliaccio ◽  
Antonio Suglia ◽  
Francesco Manfrevola ◽  
Veronica Porreca ◽  
...  

The objective of this work has been to characterize the estrogenic activity of bisphenol-A (BPA) and the adverse effects on the endocannabinoid system (ECS) in modulating germ cell progression. Male offspring exposed to BPA during the foetal-perinatal period at doses below the no-observed-adverse-effect-level were used to investigate the exposure effects in adulthood. Results showed that BPA accumulates specifically in epididymal fat rather than in abdominal fat and targets testicular expression of 3β-hydroxysteroid dehydrogenase and cytochrome P450 aromatase, thus promoting sustained increase of estrogens and a decrease of testosterone. The exposure to BPA affects the expression levels of some ECS components, namely type-1 (CB1) and type-2 cannabinoid (CB2) receptor and monoacylglycerol-lipase (MAGL). Furthermore, it affects the temporal progression of germ cells reported to be responsive to ECS and promotes epithelial germ cell exfoliation. In particular, it increases the germ cell content (i.e., spermatogonia while reducing spermatocytes and spermatids), accelerates progression of spermatocytes and spermatids, promotes epithelial detachment of round and condensed spermatids and interferes with expression of cell–cell junction genes (i.e., zonula occcludens protein-1, vimentin and β-catenin). Altogether, our study provides evidence that early exposure to BPA produces in adulthood sustained and site-specific BPA accumulation in epididymal fat, becoming a risk factor for the reproductive endocrine pathways associated to ECS.


Electronics ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1040
Author(s):  
Menghan Wei ◽  
Youjia Chen ◽  
Ming Ding

Unmanned aerial vehicles (UAVs), featured by the high-mobility and high-quality propagation environment, have shown great potential in wireless communication applications. In this paper, a novel UAV-aided small-cell content caching network is proposed and analyzed, where joint transmission (JT) is considered in the dense small-cell networks and mobile UAVs are employed to shorten the serving distance. The system performance is evaluated in terms of the average cache hit probability and the ergodic transmission rate. From the analytical results, we find that (i) the proposed UAV-aided small-cell network shows superior caching performance and, even with a small density of UAVs the system’s cache hit probability, can be improved significantly; (ii) the content’s optimal caching probability to maximize the cache hit probability is proportional to the (K+1)-th root of its request probability, where K is the number of small-cell base stations that serve each user by JT; (iii) caching the most popular content in UAVs may lead to a low transmission rate due to the limited resource offered by the low-density UAVs. Simulation results are presented to validate the theoretical results and the performance gain achieved by the optimal caching strategy.


2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii286-iii286
Author(s):  
Caitlin Ung ◽  
Maria Tsoli ◽  
Jie Liu ◽  
Domenico Cassano ◽  
Dannielle Upton ◽  
...  

Abstract DIPGs are the most aggressive pediatric brain tumors. Currently, the only treatment is irradiation but due to its palliative nature patients die within 12 months. Effective delivery of chemotherapy across the blood-brain barrier (BBB) has been a key challenge for the eradication of this disease. We have developed a novel gold nanoparticle functionalised with human serum albumin (Au-NP, 98.8 ±19 nm) for the delivery of doxorubicin. In this study, we evaluated the cytotoxic efficacy of doxorubicin delivered through gold nanoparticles (Au-NP-Dox). We found that DIPG neurospheres were equally sensitive to doxorubicin and Au-NP-Dox (at equimolar concentration) by alamar blue assay. Colony formation assays demonstrated a significantly more potent effect of Au-NP-Dox compared to doxorubicin alone, while the Au-NP had no effect. Furthermore, western blot analysis indicated increased apoptotic markers cleaved Parp, caspase 3/7 and phosphorylated H2AX in Au-NP-Dox treated DIPG neurospheres. Live cell content and confocal imaging demonstrated significantly higher uptake of Au-NP-Dox compared to doxorubicin alone. Treatment of a DIPG orthotopic mouse model with Au-NP-Dox showed no signs of toxicity with stable weights being maintained during treatment. However, in contrast to the above in vitro findings the in vivo study showed no anti-tumor effect possibly due to poor penetration of Au-NP-Dox into the brain. We are currently evaluating whether efficacy can be improved using measures to open the BBB transiently. This study highlights the need for rigorous in vivo testing of new treatment strategies before clinical translation to reduce the risk of administration of ineffective treatments.


Author(s):  
Lajos Csönge ◽  
Ágnes Bozsik ◽  
Zoltán Tóth-Bagi ◽  
Róbert Gyuris ◽  
János Kónya

AbstractDuring the last two decades autologous platelet and leukocyte rich products (PRP; PRF), opened new perspectives in regenerative medicine. In particular regenerative dentistry played a pioneer role in the application of these products in bone regenerative cases. Many aspects of cytokines, such as, growth factor release, blood cell content and its characterization were reported, but some practical questions are still unanswered in the preparation of PRF membranes and sticky bones. A new folding technique was introduced that created a good quality, pliable, and strong F-PRF membrane with a dense fibrin network and more homogenous blood cell distribution. F-PRF produced a very promising sticky bone combined with human freeze-dried cortical bone matrix gelatin (BMG). There hasn’t been much focus on the quality and character of the applied bone and the optimal membrane/bone particle ratio has not been reported. A 0.125 g BMG/ml plasma (1 g/8 ml) seems like the ideal combination with maximal BMG adhesion capacity of the membrane. Particle distribution of BMG showed that 3/4 of the particles ranged between 300–1000 µ, the remnant 1/4 was smaller than 300 µ. The whole F-PRF membrane and its parts were compared with conventional A-PRF membrane concerning their resistance against proteolytic digestion. The F-PRF was superior to A-PRF, which dissolved within 4–5 days, while F-PRF was destroyed only after 11 days, so this provides a better chance for local bone morphogenesis. The F-PRF pieces had similar resistance to the whole intact one, so they can be ideal for surgical procedures without risk of fast disintegration.


2013 ◽  
Vol 126 (8) ◽  
pp. 557-566 ◽  
Author(s):  
Tim Snijders ◽  
Benjamin T. Wall ◽  
Marlou L. Dirks ◽  
Joan M. G. Senden ◽  
Fred Hartgens ◽  
...  

Two weeks of muscle disuse led to a loss in muscle mass and strength. The loss in muscle mass was attributed to both type I and type II muscle fibre atrophy, and was not accompanied by a decline in satellite cell content.


2009 ◽  
Vol 1188 ◽  
Author(s):  
Min Liu ◽  
Zoran S. Petrovic ◽  
Yijin Xu

AbstractStarting from a bio-based polyol through modification of soybean oil, BIOH™ X-210, two series of bio-based polyurethanes-clay nanocomposite foams have been prepared. The effects of organically-modified clay types and loadings on foam morphology, cell structure, and the mechanical and thermal properties of these bio-based polyurethanes-clay nanocomposite foams have been studied with optical microscopy, compression test, thermal conductivity, DMA and TGA characterization. Density of nanocomposite foams decreases with the increase of clay loadings, while reduced 10% compressive stress and yield stress keep constant up to 2.5% clay loading in polyol. The friability of rigid polyurethane-clay nanocomposite foams is high than that of foam without clay, and the friability for nanofoams from Cloisite® 10A is higher than that from 30B at the same clay loadings. The incorporation of clay nanoplatelets decreases the cell size in nanocomposite foams, meanwhile increases the cell density; which would be helpful in terms of improving thermal insulation properties. All the nanocomposite foams were characterized by increased closed cell content compared with the control foam from X-210 without clay, suggesting the potential to improve thermal insulation of rigid polyurethane foams by utilizing organically modified clay. Incorporation of clay into rigid polyurethane foams results in the increase in glass transition temperature: the Tg increased from 186 to 197 to 204 °C when 30B concentration in X-210 increased from 0 to 0.5 to 2.5%, respectively. Even though the thermal conductivity of nanocomposite foams from 30B is lower than or equal to that of rigid polyurethane control foam from X-210, thermal conductivity of nanocomposite foams from 10A is higher than that of control at all 10A concentrations. The reason for this abnormal phenomenon is not clear at this moment; investigation on this is on progress.


Sign in / Sign up

Export Citation Format

Share Document