scholarly journals ADJUSTMENT OF LARGE SOLAR OVEN FLAT HELIOSTAT HELIOSTATS

Author(s):  
Yu. Sobirov

This paper presents an improved method for adjusting individual mirrors –facets of heliostats of a Big Solar Furnace (BSF) with a heat output of 1000 kW in Uzbekistan. Due to the fact that a BSF consists of 22,790 pieces of individual mirrors, the adjustment - setting a specific geometric position of these mirrors is very important. The process of adjusting the mirrors is very time consuming and lengthy. Often exactly the adjustments are influenced by subjective factors by the aligners. In order to improve the performance and accuracy of the alignment, the facet of heliostats has applied the Technical Vision System (TVS), as well as improved the process of assessing the state of alignment and the processing of alignment data. The TVS consisting of a video camera, an interface, a personal computer and special software allows you to visually and accurately assess the alignment conditions of the heliostat facets before and after the alignment process. Allows you to save the data in computer memory for further processing and analysis. Allows you to create a database of the alignment status of each of the 62 heliostats of LSF. Special software developed by us allows you to quickly and accurately determine the deviations of the heliostat facets from the calculated geometric points in angular minutes. Based on the data obtained, you can build histograms, graphs, etc. for visual analysis of the heliostat alignment states before and after the alignment process.

Author(s):  
P. P. Kazakevich ◽  
A. N. Yurin ◽  
G. А. Prokopovich

The most rational method for identifying the quality of fruits is the optical method using PPE, which has the accuracy and stability of measurement, as well as distance and high productivity. The paper presents classification of fruit quality recognition systems and substantiates the design and technological scheme of the vision system for sorting them, consisting of an optical module with installed structural illumination and a video camera, an electronic control unit with an interface and actuators for the sorter and conveyor for fruits. In the course of the study, a single-stream type of fruit flow in PPE with forced rotation was substantiated, a structural and technological scheme of an STZ with a feeding conveyor, an optical module and a control unit, an algorithm for functioning of the STZ software was developed based on algorithm for segmentation of fruit colors, tracking algorithm, etc. deep learning ANN, which provide recognition of the size and color of fruits, as well as damage from mechanical stress, pests and diseases. The developed STZ has been introduced into the processing line for sorting and packing apples, LSP-4 has successfully passed preliminary tests and production tests at OJSC Ostromechevo. In the course of preliminary tests of the LSP-4 line, it was found that it provided fruit recognition with a probability of at least 95%, while the labor productivity made 2.5 t/h.


Author(s):  
Richard Mcintosh ◽  
David Mastronarde ◽  
Kent McDonald ◽  
Rubai Ding

Microtubules (MTs) are cytoplasmic polymers whose dynamics have an influence on cell shape and motility. MTs influence cell behavior both through their growth and disassembly and through the binding of enzymes to their surfaces. In either case, the positions of the MTs change over time as cells grow and develop. We are working on methods to determine where MTs are at different times during either the cell cycle or a morphogenetic event, using thin and thick sections for electron microscopy and computer graphics to model MT distributions.One approach is to track MTs through serial thin sections cut transverse to the MT axis. This work uses a video camera to digitize electron micrographs of cross sections through a MT system and create image files in computer memory. These are aligned and corrected for relative distortions by using the positions of 8 - 10 MTs on adjacent sections to define a general linear transformation that will align and warp adjacent images to an optimum fit. Two hundred MT images are then used to calculate an “average MT”, and this is cross-correlated with each micrograph in the serial set to locate points likely to correspond to MT centers. This set of points is refined through a discriminate analysis that explores each cross correlogram in the neighborhood of every point with a high correlation score.


Aerospace ◽  
2021 ◽  
Vol 8 (6) ◽  
pp. 167
Author(s):  
Bartłomiej Brukarczyk ◽  
Dariusz Nowak ◽  
Piotr Kot ◽  
Tomasz Rogalski ◽  
Paweł Rzucidło

The paper presents automatic control of an aircraft in the longitudinal channel during automatic landing. There are two crucial components of the system presented in the paper: a vision system and an automatic landing system. The vision system processes pictures of dedicated on-ground signs which appear to an on-board video camera to determine a glide path. Image processing algorithms used by the system were implemented into an embedded system and tested under laboratory conditions according to the hardware-in-the-loop method. An output from the vision system was used as one of the input signals to an automatic landing system. The major components are control algorithms based on the fuzzy logic expert system. They were created to imitate pilot actions while landing the aircraft. Both systems were connected with one another for cooperation and to control an aircraft model in a simulation environment. Selected results of tests presenting control efficiency and precision are shown in the final section of the paper.


Obesity Facts ◽  
2021 ◽  
pp. 1-11
Author(s):  
Marijn Marthe Georgine van Berckel ◽  
Saskia L.M. van Loon ◽  
Arjen-Kars Boer ◽  
Volkher Scharnhorst ◽  
Simon W. Nienhuijs

<b><i>Introduction:</i></b> Bariatric surgery results in both intentional and unintentional metabolic changes. In a high-volume bariatric center, extensive laboratory panels are used to monitor these changes pre- and postoperatively. Consecutive measurements of relevant biochemical markers allow exploration of the health state of bariatric patients and comparison of different patient groups. <b><i>Objective:</i></b> The objective of this study is to compare biomarker distributions over time between 2 common bariatric procedures, i.e., sleeve gastrectomy (SG) and gastric bypass (RYGB), using visual analytics. <b><i>Methods:</i></b> Both pre- and postsurgical (6, 12, and 24 months) data of all patients who underwent primary bariatric surgery were collected retrospectively. The distribution and evolution of different biochemical markers were compared before and after surgery using asymmetric beanplots in order to evaluate the effect of primary SG and RYGB. A beanplot is an alternative to the boxplot that allows an easy and thorough visual comparison of univariate data. <b><i>Results:</i></b> In total, 1,237 patients (659 SG and 578 RYGB) were included. The sleeve and bypass groups were comparable in terms of age and the prevalence of comorbidities. The mean presurgical BMI and the percentage of males were higher in the sleeve group. The effect of surgery on lowering of glycated hemoglobin was similar for both surgery types. After RYGB surgery, the decrease in the cholesterol concentration was larger than after SG. The enzymatic activity of aspartate aminotransferase, alanine aminotransferase, and alkaline phosphate in sleeve patients was higher presurgically but lower postsurgically compared to bypass values. <b><i>Conclusions:</i></b> Beanplots allow intuitive visualization of population distributions. Analysis of this large population-based data set using beanplots suggests comparable efficacies of both types of surgery in reducing diabetes. RYGB surgery reduced dyslipidemia more effectively than SG. The trend toward a larger decrease in liver enzyme activities following SG is a subject for further investigation.


Author(s):  
Д.А. Смирнов ◽  
В.Г. Бондарев ◽  
А.В. Николенко

Проведен краткий анализ как отечественных, так и зарубежных систем межсамолетной навигации. В ходе анализа были отражены недостатки систем межсамолетной навигации и представлен актуальный подход повышения точности системы навигации за счет применения системы технического зрения. Для определения местоположения ведущего самолета предлагается рассмотреть в качестве измерительного комплекса систему технического зрения, которая способна решать большой круг задач на различных этапах, в частности, и полет строем. Систему технического зрения предлагается установить на ведомом самолете с целью измерения всех параметров, необходимых для формирования автоматического управления полетом летательного аппарата. Обработка изображений ведущего самолета выполняется с целью определения координат трех идентичных точек на фоточувствительных матрицах. Причем в качестве этих точек выбираются оптически контрастные элементы конструкции летательного аппарата, например окончания крыла, хвостового оперения и т.д. Для упрощения процедуры обработки изображений возможно использование полупроводниковых источников света в инфракрасном диапазоне (например, с длиной волны λ = 1,54 мкм), что позволяет работать даже в сложных метеоусловиях. Такой подход может быть использован при автоматизации полета строем более чем двух летательных аппаратов, при этом необходимо только оборудовать системой технического зрения все ведомые самолеты группы The article provides a brief analysis of both domestic and foreign inter-aircraft navigation systems. In the course of the analysis, we found the shortcomings of inter-aircraft navigation systems and presented an up-to-date approach to improving the accuracy of the navigation system through the use of a technical vision system. To determine the location of the leading aircraft, we proposed to consider a technical vision system as a measuring complex, which is able to solve a large range of tasks at various stages, in particular, flight in formation. We proposed to install the technical vision system on the slave aircraft in order to measure all the parameters necessary for the formation of automatic flight control of the aircraft. We performed an image processing of the leading aircraft to determine the coordinates of three identical points on photosensitive matrices. Moreover, we selected optically contrasting elements of the aircraft structure as these points, for example, the end of the wing, tail, etc. To simplify the image processing procedure, it is possible to use semiconductor light sources in the infrared range (for example, with a wavelength of λ = 1.54 microns), which allows us to work even in difficult weather conditions. This approach can be used when automating a flight in formation of more than two aircraft, while it is only necessary to equip all the guided aircraft of the group with a technical vision system


Author(s):  
Yurii Bobkov ◽  
Pavlo Pishchela

The actual task of controlling a group of multicopters performing coordinated actions and are locating at short distances from each other, cannot be performed with the help of a standard on-board autopilot on GPS or GLONASS signals, which give large errors. The solution to this problem is possible due to additional equipment that allows you to set the distance between the multicopters and their relative position. To do this, it is proposed to mark each multicopter with an image label in the form of a standard geometric figure or a geometric body of a given color and size, and to use technical vision system and image recognition algorithms. The structure of the technical vision system for the multicopter was developed and algorithms for image processing and calculation of the change of coordinates of the neighboring multicopter, which are transmitted to the control system to introduce the necessary motion correction, were proposed. The method to identify the reference object in the image of the scene by its color was used in this work. This method is very effective compared to other methods, because it requires only one pass per pixel, which gives a significant advantage in speed during video stream frame processing. RGB color model with a color depth of 24-bit was chosen based on the analysis. Since the lighting during the flight can change, the color is set by the limits of change of the components R, G, B. To determine the distance between multicopters, a very simple but effective method of determination the area of the recognition object (labels on the neighboring multicopter) with next comparation it with the actual value is used. Since the reference object is artificial, its area can be specified with high accuracy. The offset of the center of the object from the center of the frame is used to calculate the other two coordinates. In the beginning, the specific camera instance is calibrated both for a known value of the area of the object and for its displacement along the axes relative to the center of the frame. The technical vision system model in the Simulink software environment of the Matlab system was created to test the proposed algorithms. Based on the simulation results in Simulink, you can generate code in the C programming language for further implementation of the system in real time. A series of studies of the model was conducted using a Logitech C210 webcam with a 0.3 megapixel photo matrix (640x480 resolution). According to the results of the experiment, it was found that the maximum relative error in determining the coordinates of the multicopter did not exceed 6.8 %.


2013 ◽  
Vol 1 (1) ◽  
pp. 75
Author(s):  
Hellya Agustina

This research aimed to examine positive behavioral support by teacher had been trained to reduce off-task behavior students. The participants of students was second grade of senior high school at Banjarmasin. The reason for using this design was to identifiying behavior target repeatedly with a certain time period. The instruments was be used to take data from observation form positive behavioral support and off-task behavior. The result ofanalysis data was by using visual analysis and qualitative analysis. From two of analysis indicated that there was different between before and after positive behavioral support implemented by teacher and off-task behavior of two students were reduced into lower frequency.


2011 ◽  
Vol 20 (3-4) ◽  
pp. 113-130 ◽  
Author(s):  
Colin Utz-Meagher ◽  
John Nulty ◽  
Lisa Holt

Comparative Analysis of Barefoot and Shod Running This study investigated the biomechanical difference between running barefoot and shod before and after a barefoot training program (BTP). Foot angles at contact (FA), contact time (CT), stride length (SL), initial contact force (ICF), and total peak force (TPF) in shod and unshod runners was analyzed. Fourteen collegiate runners attended 12 total sessions over a two week period. Subjects performed a baseline trial, running eight (10-20 meter) repetitions, four barefoot and four shod, at three different stations; running over a force plate, running in front of a SONY DCR-HC52 video camera (30fps) and running in front of a Casio Exilim Pro EX-F1 camera (300fps). A Post-Test (PT) was conducted at the end of the BTP. A repeated measure ANOVA showed significance (p<.05) in the Test factor, BTP; lowering participants FA mean from 18.8deg+/-.9deg to 5.6deg+/-15.1deg, CT mean from .221m+/-.02m to .2m+/-.03m, and TPF mean from 1427.4N+/-312.9N to 1348.2N+/-269.4N. A repeated measure ANOVA showed significance (p<.05) in the Condition factor (shod vs. unshod); lowering participants FA mean from 23.1deg+/-12.6deg to 1.3deg+/-14.4deg, SL mean from .9m+/-.1m to .8m+/-.1m, and ICF mean from 1465.3N+/- 369.6N to 1324.7N+/-379.4N. Running barefoot and following a BTP alters running biomechanics in ways that may decrease running related injuries.


1999 ◽  
Vol 121 (2) ◽  
pp. 116-120 ◽  
Author(s):  
A. Neumann ◽  
A. Schmitz

Video camera systems monitoring a diffuse reflecting target for measuring the flux distribution of concentrated solar radiation are quite common. This technique cannot be used if parts of the experimental setup screen the surface of the target. The development of a new measurement system with a compact geometry and a new optical design is described. With this system it is possible to measure the flux distribution behind parts of an experiment and at any position of the plane of measurement, without any alteration of the setup. The sources of error, especially those of the target and the camera, are described and discussed, and finally a comparison to the existing FATMES-System, which has been performed at the solar furnace of the DLR in Cologne, is presented. Due to its measurement principle the new system is called ’Scanning Camera and Target Measurement System‘ (acronym: SCATMES).


2019 ◽  
Vol 20 (8) ◽  
pp. 490-497
Author(s):  
V. P. Noskov ◽  
I. O. Kiselev

The actual tasks of 3D-reconstruction of the industrial-urban environment and navigation models are considered by solving the identification of textured linear objects in the process of movement according to the onboard complex and technical vision system consisting of a mutually adjusted 3D laser sensor and a video camera with a common viewing area. For a complete solution of the navigation task (determination of three linear and three angular coordinates of the control object), it is necessary to select and identify at least three mutually non-parallel flat objects in the process of moving in a sequence of point clouds formed by a 3D laser sensor. In the case of the allocation of less than three flat objects (for example, in environments subjected to destruction), the navigation problem is not fully solved (not all coordinates are determined unambiguously, and some coordinates are related by linear or non-linear dependencies). In these cases, it is proposed to additionally use the texture of the selected flat objects formed by the video camera. In the paper is given the analysis of the features of the solution of the navigation problem is carried out depending on the number of allocated and identifiable textured linear objects in the current integrated images and algorithms for solving the navigation problem are evaluated for selecting and identifying the process of movement of one textured linear object and of two textured non-parallel linear objects. It is shown that in the first case, the use of texture makes it possible to reduce the solution of the navigational problem to a three-dimensional one, and in the second case to a one-dimensional optimization problem (finding the global optimum of a functional three and one variable, respectively). The proposed algorithms for processing complexed images provide a complete solution to the navigation task even if less than three linear objects are selected, which significantly increases the reliability of solving the navigation task and building an environmental model even in industrial-urban environments that have been destroyed, and therefore, the reliability and survivability of the ground ones and airborne robotic tools in autonomous modes of movement. The results of the corresponding software and hardware solutions in real industrial-urban environments, confirmed the accuracy and effectiveness of the proposed algorithms.


Sign in / Sign up

Export Citation Format

Share Document