scholarly journals Technological improvement of the scheme unit reception and distribution of solution under conditions of high-pressure nature of groundwater

Author(s):  
S. B. Aliev ◽  
◽  
Ye.U. Omarbekov ◽  
◽  

This paper analyses the experience uranium deposits mine development under conditions of highpressure nature of groundwater proposed technology "pumping wells" and upgrading technological scheme unit receiving and distribution of the solution. The results of experimental study of the use of "pumping wells" in mining deposits of uranium by in-situ leaching mine "Karatau". It is proved that by using the proposed technology and circuits under conditions of the high groundwater pressure reduces the cost of procurement of cables, significantly reduced the cost of acquisition of submersible pumps, savings in the end cap. In practice, one processing unit is equipped with one unit for receiving and distributing the solution, therefore, a leaching solution with the same acidity is supplied to all injection wells. To avoid such cases requires selective supply of different concentrations of acid with the different indicators pH. The modernization of the scheme of the unit for receiving and distributing the solution was carried out by connecting two bypass lines, where one bypass line is designed to transfer the injection wells to the pumping one, and the second one is to transfer the pumping wells to the pumping one. By connecting the two bypass lines, it will be possible to supply a leach solution with a higher acid concentration, selectively to any injection well. As a result, acid consumption will decrease due to its selective supply and pH values in wells will be balanced.

1988 ◽  
Vol 20 (3) ◽  
pp. 165-172 ◽  
Author(s):  
Carol Braester ◽  
Rudolf Martinell

Vyredox plants are designed for in situ removal of iron and/or manganese, while Nitredox plants are designed for in situ removal of nitrates and nitrites. Both methods make use of bacteriological processes. A typical unit of a Vyredox plant comprises several injection wells, through which degassed aerated water is injected into the aquifer and a pumping well through which water, partly free of iron or manganese, is abstracted. A typical Nitredox plant comprises a number of injection-pumping wells located on the circumference of two concentric circles and a pumping well in the centre through which water, partly free of nitrates and iron and/or manganese, is produced. Water with the carbon nutrient is injected through the wells located on the outer circle, while the wells located on the inner circle play the role of the Vyredox injection wells. The Nitredox process is associated with the formation of nitrogen, which is removed through the wells located on the inner circle. Vyredox and Nitredox processes include flow phenomena, transport, chemical reactions and bacteriological processes. These phenomena are described and formulated mathematically as a first step in the mathematical modelling of such processes.


Author(s):  
S. B. Aliev ◽  
◽  
Omarbekov Ye.U. ◽  
◽  

This paper presents the results of experimental research applications "pumping wells" when the mining of uranium deposits by the method of In-Situ Leach Mining ISL in mine "Karatau". Analyzed the experience results of uranium deposits development in the conditions of high-pressure nature of groundwater. The experimental works have been conducted using proposed “pumping wells” technology. The implementation of the proposed "pumping well" technology did not affect the Me and pH values in comparison with the actual technology, but it did reduce the production cost. It is proved that by using the proposed technology and schemes in conditions of high-pressure nature of groundwater reduces the cost of procurement of cables, significantly reducing the cost of acquisition of submersible pumps, savings in the end cap.


Author(s):  
M. B. Kurmanseiit ◽  
◽  
M. S. Tungatarova ◽  
K. A. Alibayeva ◽  
◽  
...  

In-Situ Leaching is a method of extracting minerals by selectively dissolving it with a leaching solution directly in the place of occurrence of the mineral. In practice, during the development of deposits with the In-Situ Leaching method, situations arise when the solution tends to go down below the active thickness of the stratum. This may be due to geological heterogeneity of the rock or gravitational sedimentation of the solution in the rock due to the difference in the densities of the solution and groundwater. As a result of the deposition of the solution along the height, there is a decrease in the recovery of the metal located in the upper part of the geological layers. This article examines the effect of gravity on the flow regime during the filtration of the solution in the rock. The influence of the gravitational effect on the flow of solution in the rock is studied for different ratios of the densities of the solution and groundwater without taking into account the interaction of the solution with the rock. The CUDA technology is used to improve the performance of calculations. The results show that the use of CUDA technology allows to increase the performance of calculations by 40-80 times compared to calculations on a central processing unit (CPU) for different computational grids.


Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 272
Author(s):  
Ayman M. Atta ◽  
Mohamed H. El-Newehy ◽  
Meera Moydeen Abdulhameed ◽  
Mohamed H. Wahby ◽  
Ahmed I. Hashem

The enhancement of both thermal and mechanical properties of epoxy materials using nanomaterials becomes a target in coating of the steel to protect it from aggressive environmental conditions for a long time, with reducing the cost. In this respect, the adhesion properties of the epoxy with the steel surfaces, and its proper superhyrophobicity to repel the seawater humidity, can be optimized via addition of green nanoparticles (NPs). In-situ modification of silver (Ag) and calcium carbonate (CaCO3) NPs with oleic acid (OA) was carried out during the formation of Ag−OA and CaCO3−OA, respectively. The epoxide oleic acid (EOA) was also used as capping for Ca−O3 NPs by in-situ method and epoxidation of Ag−OA NPs, too. The morphology, thermal stability, and the diameters of NPs, as well as their dispersion in organic solvent, were investigated. The effects of the prepared NPs on the exothermic curing of the epoxy resins in the presence of polyamines, flexibility or rigidity of epoxy coatings, wettability, and coatings durability in aggressive seawater environment were studied. The obtained results confirmed that the proper superhyrophobicity, coating adhesion, and thermal stability of the epoxy were improved after exposure to salt spray fog for 2000 h at 36 °C.


Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 275
Author(s):  
Chung Yiin Wong ◽  
Kunlanan Kiatkittipong ◽  
Worapon Kiatkittipong ◽  
Seteno K. O. Ntwampe ◽  
Man Kee Lam ◽  
...  

Oftentimes, the employment of entomoremediation to reduce organic wastes encounters ubiquitous shortcomings, i.e., ineffectiveness to valorize recalcitrant organics in wastes. Considering the cost-favorability, a fermentation process can be employed to facilitate the degradation of biopolymers into smaller organics, easing the subsequent entomoremediation process. However, the efficacy of in situ fermentation was found impeded by the black soldier fly larvae (BSFL) in the current study to reduce coconut endosperm waste (CEW). Indeed, by changing into ex situ fermentation, in which the fungal Rhizopus oligosporus was permitted to execute fermentation on CEW prior to the larval feeding, the reduction of CEW was significantly enhanced. In this regard, the waste reduction index of CEW by BSFL was almost doubled as opposed to in situ fermentation, even with the inoculation of merely 0.5 wt % of Rhizopus oligosporus. Moreover, with only 0.02 wt % of fungal inoculation size to execute the ex situ fermentation on CEW, it could spur BSFL growth by about 50%. Finally, from the statistical correlation study using principal component analysis, the presence of Rhizopus oligosporus in a range of 0.5–1.0 wt % was regarded as optimum to ferment CEW via ex situ mode, prior to the valorization by BSFL in reducing the CEW.


Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 866
Author(s):  
María E. Taboada ◽  
Pía C. Hernández ◽  
Aldo P. Padilla ◽  
Nathalie E. Jamett ◽  
Teófilo A. Graber

A study of the pretreatment stage and subsequent leaching of a mixed copper ore with different chloride solutions containing iron was carried out. The first stage considered pretreatment tests to decide the best conditions. Two levels of each factor were analyzed, 20 and 50 kg/t of NaCl, 17 and 25 kg/t of H2SO4, 0 and 25 kg/t of Fe2(SO4)3·9.2H2O, 0 and 25 kg/t of Fe2SO4·7H2O, and a curing time of 15 and 30 days. The results showed a significant effect of NaCl and curing time on the extraction, and less effect was found with the variation of acid and iron salts. The second stage included column leaching using a solution with 0.5 g/L of Cu+2, 80 g/L of Cl−, 10 g/L of H2SO4, and variable concentrations of ferric and ferrous ions (0 and 2 g/L). The best copper extraction of 80.2% was found considering a pretreatment of 30 days, 25 kg/t of H2SO4, 50 kg/t of NaCl, and a leaching solution concentration described previously with 2 g/L of Fe+2. The results showed the leaching of all copper oxide species and 20% of the copper sulfide species. In addition, there was a reduction in the acid consumption as the resting time increases. Furthermore, to evaluate a possible decrease in time and acid in pretreatment and chloride in leaching, tests including 10 and 25 kg/t of H2SO4 and 1, 15, and 30 days of curing and a diminution of the NaCl concentration to 20 g/L (content from seawater) were executed. The results showed a significant effect on curing time below 15 days. Furthermore, the slight influence of the decrease of acid on copper extraction gives cost reduction opportunities. The diminution of chloride concentration (80 to 20 g/L) in leaching solution decreases the extraction from 79% to 66.5%. Finally, the Mellado leaching kinetic model was successfully implemented.


The Precast industry is booming industry now a day, but then also the implementation ratio of precast member in residential construction work is not up to the mark. As we all know that precast having numerous advantages over the cast in situ construction method, for example it saves the total time of construction which indirectly reduces the cost of construction but still we are lagging behind in implementation of precast in it. In this research we have listed out some problem which can be cause of less implementation of precast in residential construction buildings. As discussed in paper, there are so many factors are affected on Implementation of Precast in Residential Construction Sector For example: Technical Issues and General Issues. In Technical Issues Joint stability problem during Erection, Standard size of precast element, Leakage Issues, Design change related problem, Requirement of Standard Rate per Panel, End user Profit, Additional Taxes, General Issues are: Transportation of Precast Element, Loading and Unloading problems, Transportation to sight, Storage Area, Skilled Labour Research has done and data is collected through Questionery survey, Field survey, and research survey.


2017 ◽  
Vol 11 (2) ◽  
pp. 827-840 ◽  
Author(s):  
Luc Girod ◽  
Christopher Nuth ◽  
Andreas Kääb ◽  
Bernd Etzelmüller ◽  
Jack Kohler

Abstract. Acquiring data to analyse change in topography is often a costly endeavour requiring either extensive, potentially risky, fieldwork and/or expensive equipment or commercial data. Bringing the cost down while keeping the precision and accuracy has been a focus in geoscience in recent years. Structure from motion (SfM) photogrammetric techniques are emerging as powerful tools for surveying, with modern algorithm and large computing power allowing for the production of accurate and detailed data from low-cost, informal surveys. The high spatial and temporal resolution permits the monitoring of geomorphological features undergoing relatively rapid change, such as glaciers, moraines, or landslides. We present a method that takes advantage of light-transport flights conducting other missions to opportunistically collect imagery for geomorphological analysis. We test and validate an approach in which we attach a consumer-grade camera and a simple code-based Global Navigation Satellite System (GNSS) receiver to a helicopter to collect data when the flight path covers an area of interest. Our method is based and builds upon Welty et al. (2013), showing the ability to link GNSS data to images without a complex physical or electronic link, even with imprecise camera clocks and irregular time lapses. As a proof of concept, we conducted two test surveys, in September 2014 and 2015, over the glacier Midtre Lovénbreen and its forefield, in northwestern Svalbard. We were able to derive elevation change estimates comparable to in situ mass balance stake measurements. The accuracy and precision of our DEMs allow detection and analysis of a number of processes in the proglacial area, including the presence of thermokarst and the evolution of water channels.


Author(s):  
Raghu V. Prakash

Creep, creep-fatigue damage is often estimated through in-situ metallography, tensile testing of specimens. However, these methods require specimen preparation which includes specimen extraction from critical components. Automated ball indentation testing has been used as an effective tool to determine the mechanical properties of metallic materials. In this work, the tensile properties of materials subjected to controlled levels of damage in creep, creep-fatigue is studied. It is found that the tensile properties such as yield strength and UTS deteriorates with creep damage, whereas the same specimens show an improved UTS values (at the cost of ductility) when subjected to creep-fatigue interactions.


1982 ◽  
Vol 22 (01) ◽  
pp. 141-150 ◽  
Author(s):  
Muhammad I. Kabir ◽  
Larry W. Lake ◽  
Robert S. Schechter

Abstract In-situ leach mining for uranium is an emerging technology. Currently, the selection of a well pattern designed to recover mineral values is governed primarily by arguments based on hydrological considerations. The effects of well pattern and well spacing on uranium recovery and oxidant utilization are considered in this paper. As expected, formation permeability heterogeneities and anisotropies are found to be important issues requiring careful consideration, however, it also is shown that chemical factors cannot be ignored. In particular, it is shown that the oxidant efficiency and the produced uranium solution concentrations are sensitive to the presence of other minerals competing with uranium for oxidant. If the Damkohler number for competing minerals, which measures the speed of the reaction, exceeds that for uranium, the competing mineral will have to be oxidized completely to recover a large proportion of the uranium. If the Damkohler number is smaller, it may be possible to achieve considerable selectivity for uranium by adjusting the well spacing. It also is shown that the oxidant efficiency is generally highest for well patterns that give streamlines of roughly equal length and that there is a minimum distance between injection and production wells to utilize oxidant most advantageously. Introduction In-situ solution mining is a process whereby uranium is recovered from permeable sandstone bodies by injecting and producing a leach solution through an array of wells penetrating the mineralized zone. It appears to have broad application and in many situations offers both economic and environmental advantages. The processes may be classified generally as acid or alkaline, but the general features of both are the same. The insoluble uranium in the mineralized zone is in the +4 state of oxidation. To be mobilized, the uranium must be oxidized to the +6 state and complexed either with sulfate in the case of acid leaching or carbonate in the case of alkaline leaching to form highly soluble uranyl sulfates or carbonates. The leach solutions, therefore, contain an oxidant (oxygen, hydrogen peroxide, ferric cations, sodium hyperchlorite, etc.) together with a complexing agent (anion). The choice of leach solution depends on a number of factors including selectivity and injectivity. For example, formations containing more than 1 wt% carbonates are not likely to be candidates for acid leaching because of the large acid requirement and because of permeability loss due to precipitation of calcium sulfate. It is the purpose of this paper to consider the technical factors (as opposed to economic) that govern the choice of well pattern to be used for leaching. The discussion is structured so that the conclusions apply to both alkaline and acid lixiviants and to any oxidant, although an occasional reference to a particular oxidant may appear. Considerable use is made of the computer simulator previously reported. The computational details are available in that paper. A number of factors that pertain to the selection of a well pattern are considered. It is shown that the effectiveness of the oxidant - i.e., the uranium recovered per unit of oxidant injected - is related to the well pattern, to the reaction rates, and to the permeability variations, especially if the formation is anisotropic. Furthermore, the spacing between wells is related to reactions with oxidizable minerals that compete for oxidant. These considerations can be quantified to some extent by studying linear systems. Linear Flow Systems SPEJ P. 132^


Sign in / Sign up

Export Citation Format

Share Document