In vivo visualization of GL261-luc2 mouse glioma cells by use of Alexa Fluor–labeled TRP-2 antibodies

2014 ◽  
Vol 36 (2) ◽  
pp. E12 ◽  
Author(s):  
Kathryn E. Fenton ◽  
Nikolay L. Martirosyan ◽  
Mohammed G. Abdelwahab ◽  
Stephen W. Coons ◽  
Mark C. Preul ◽  
...  

Object For patients with glioblastoma multiforme, median survival time is approximately 14 months. Longer progression-free and overall survival times correlate with gross-total resection of tumor. The ability to identify tumor cells intraoperatively could result in an increased percentage of tumor resected and thus increased patient survival times. Available labeling methods rely on metabolic activity of tumor cells; thus, they are more robust in high-grade tumors, and their utility in low-grade tumors and metastatic tumors is not clear. The authors demonstrate intraoperative identification of tumor cells by using labeled tumor-specific antibodies. Methods GL261 mouse glioma cells exhibit high expression of a membrane-bound protein called second tyrosinase-related protein (TRP-2). The authors used these cells to establish an intracranial, immunocompetent model of malignant glioma. Antibodies to TRP-2 were labeled by using Alexa Fluor 488 fluorescent dye and injected into the tail vein of albino C57BL/6 mice. After 24 hours, a craniotomy was performed and the tissue was examined in vivo by using an Optiscan 5.1 handheld portable confocal fiber-optic microscope. Tissue was examined ex vivo by using a Pascal 5 scanning confocal microscope. Results Labeled tumor cells were visible in vivo and ex vivo under the respective microscopes. Conclusions Fluorescently labeled tumor-specific antibodies are capable of binding and identifying tumor cells in vivo, accurately and specifically. The development of labeled markers for the identification of brain tumors will facilitate the use of intraoperative fluorescence microscopy as a tool for increasing the extent of resection of a broad variety of intracranial tumors.

2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi97-vi97
Author(s):  
Satoshi Suehiro ◽  
Takanori Ohnishi ◽  
Akihiro Inoue ◽  
Daisuke Yamashita ◽  
Masahiro Nishikawa ◽  
...  

Abstract OBJECTIVE High invasiveness of malignant gliomas frequently causes local tumor recurrence. To control such recurrence, novel therapies targeted toward infiltrating glioma cells are required. Here, we examined cytotoxic effects of sonodynamic therapy (SDT) combined with a sonosensitizer, 5-aminolevulinic acid (5-ALA), on malignant gliomas both in vitro and in vivo. METHODS In vitro cytotoxicity of 5-ALA-SDT was evaluated in U87 and U251 glioma cells and in U251Oct-3/4 glioma stemlike cells. Treatment-related apoptosis was analyzed using flow cytometry. Intracellular reactive oxygen species (ROS) were measured and the role of ROS in treatment-related cytotoxicity was examined. Effects of 5-ALA-SDT with high-intensity focused ultrasound (HIFU) on tumor growth, survival of glioma-transplanted mice, and histological features of the mouse brains were investigated. RESULTS The 5-ALA-SDT inhibited cell growth and changed cell morphology. Flow cytometric analysis indicated that 5-ALA-SDT induced apoptotic cell death. The 5-ALA-SDT generated higher ROS than in the control group, and inhibition of ROS generation completely eliminated the cytotoxic effects of 5-ALA-SDT. In the in vivo study, 5-ALA-SDT with HIFU greatly prolonged survival of the tumor-bearing mice compared with that of the control group (p < 0.05). Histologically, 5-ALA-SDT produced mainly necrosis of the tumor tissue in the focus area and induced apoptosis of the tumor cells in the perifocus area around the target of the HIFU-irradiated field. Normal brain tissues around the ultrasonic irradiation field of HIFU remained intact. CONCLUSIONS The 5-ALA-SDT was cytotoxic toward malignant gliomas. Generation of ROS by the SDT was thought to promote apoptosis of glioma cells. The 5-ALA-SDT with HIFU induced tumor necrosis in the focus area and apoptosis in the perifocus area of the HIFU-irradiated field. These results suggest that 5-ALA-SDT with HIFU may present a less invasive and tumor-specific therapy, not only for a tumor mass but also for infiltrating tumor cells in malignant gliomas.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. SCI-44-SCI-44
Author(s):  
Xiaoxia Li

Abstract Low-grade systemic inflammation is often associated with metabolic syndrome, which plays a critical role in the development of the obesity-associated inflammatory diseases, including insulin resistance and atherosclerosis. Here, we investigate how Toll-like receptor-MyD88 signaling in myeloid and endothelial cells coordinately participates in the initiation and progression of high fat diet-induced systemic inflammation and metabolic inflammatory diseases. MyD88 deficiency in myeloid cells inhibits macrophage recruitment to adipose tissue and their switch to an M1-like phenotype. This is accompanied by substantially reduced diet-induced systemic inflammation, insulin resistance, and atherosclerosis. MyD88 deficiency in endothelial cells results in a moderate reduction in diet-induced adipose macrophage infiltration and M1 polarization, selective insulin sensitivity in adipose tissue, and amelioration of spontaneous atherosclerosis. Both in vivo and ex vivo studies suggest that MyD88-dependent GM-CSF production from the endothelial cells might play a critical role in the initiation of obesity-associated inflammation and development of atherosclerosis by priming the monocytes in the adipose and arterial tissues to differentiate into M1-like inflammatory macrophages. Collectively, these results implicate a critical MyD88-dependent interplay between myeloid and endothelial cells in the initiation and progression of obesity-associated inflammatory diseases. Disclosures No relevant conflicts of interest to declare.


2020 ◽  
Author(s):  
Barbara Oldrini ◽  
Nuria Vaquero-Siguero ◽  
Quanhua Mu ◽  
Paula Kroon ◽  
Ying Zhang ◽  
...  

AbstractTemozolomide (TMZ) is an oral alkylating agent used for the treatment of glioblastoma and is now becoming a chemotherapeutic option in patients diagnosed with high-risk low-grade gliomas. The O-6-methylguanine-DNA methyltransferase (MGMT) is responsible for the direct repair of the main TMZ-induced toxic DNA adduct, the O6-Methylguanine lesion. MGMT promoter hypermethylation is currently the only known biomarker for TMZ response in glioblastoma patients. Here we show that a subset of recurrent gliomas carries MGMT genomic rearrangements that lead to MGMT overexpression, independently from changes in its promoter methylation. By leveraging the CRISPR/Cas9 technology we generated some of these MGMT rearrangements in glioma cells and demonstrated that the MGMT genomic rearrangements contribute to TMZ resistance both in vitro and in vivo. Lastly, we showed that such fusions can be detected in tumor-derived exosomes and could potentially represent an early detection marker of tumor recurrence in a subset of patients treated with TMZ.


2020 ◽  
Author(s):  
Ada Admin ◽  
Julia Braune ◽  
Andreas Lindhorst ◽  
Janine Fröba ◽  
Constance Hobusch ◽  
...  

Obesity is associated with a chronic low-grade inflammation in visceral adipose tissue (AT) characterized by an increasing number of adipose tissue macrophages (ATMs) and linked to type 2 diabetes. AT inflammation is histologically indicated by the formation of so-called crown-like structures (CLS), as accumulation of ATMs around dying adipocytes, and the occurrence of multi-nucleated giant cells (MGCs). However to date, the function of MGCs in obesity is unknown. Hence, the aim of this study was to characterize MGCs in AT and unravel the function of these cells. <p>We demonstrate that MGCs occur in obese patients and after 24 weeks of high fat diet (HFD) in mice, accompanying signs of AT inflammation and then represent ~3% of ATMs in mice. Mechanistically, we found evidence that adipocyte death triggers MGC formation. Most importantly, MGCs in obese AT have a higher capacity to phagocytose oversized particles, such as adipocytes, as shown by live-imaging of AT, 45 µm bead uptake <i>ex vivo</i> and a higher lipid content <i>in vivo</i>. Finally, we show that IL-4 treatment is sufficient to increase the number of MGCs in AT, whereas other factors maybe more important for endogenous MGC formation <i>in vivo</i>.</p>


Author(s):  
Libuše Janská ◽  
Libi Anandi ◽  
Nell C. Kirchberger ◽  
Zoran S. Marinkovic ◽  
Logan T. Schachtner ◽  
...  

There is an urgent need for accurate, scalable, and cost-efficient experimental systems to model the complexity of the tumor microenvironment. Here, we detail how to fabricate and use the Metabolic Microenvironment Chamber (MEMIC) – a 3D-printed ex vivo model of intratumoral heterogeneity. A major driver of the cellular and molecular diversity in tumors is the accessibility to the blood stream that provides key resources such as oxygen and nutrients. While some tumor cells have direct access to these resources, many others must survive under progressively more ischemic environments as they reside further from the vasculature. The MEMIC is designed to simulate the differential access to nutrients and allows co-culturing different cell types, such as tumor and immune cells. This system is optimized for live imaging and other microscopy-based approaches, and it is a powerful tool to study tumor features such as the effect of nutrient scarcity on tumor-stroma interactions. Due to its adaptable design and full experimental control, the MEMIC provide insights into the tumor microenvironment that would be difficult to obtain via other methods. As a proof of principle, we show that cells sense gradual changes in metabolite concentration resulting in multicellular spatial patterns of signal activation and cell proliferation. To illustrate the ease of studying cell-cell interactions in the MEMIC, we show that ischemic macrophages reduce epithelial features in neighboring tumor cells. We propose the MEMIC as a complement to standard in vitro and in vivo experiments, diversifying the tools available to accurately model, perturb, and monitor the tumor microenvironment, as well as to understand how extracellular metabolites affect other processes such as wound healing and stem cell differentiation.


2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi43-vi43
Author(s):  
Hamid Suhail ◽  
Rattan Ramandeep ◽  
Giri Shailendra ◽  
Ana deCarvalho ◽  
Steven Kalkanis ◽  
...  

Abstract Glioblastoma (GBM) is a highly glycolytic aggressive brain tumor characterized by increased proliferation and resistance to chemotherapy and radiotherapy. AMPK has been reported as tumor suppressor and reprograms the cellular metabolic pathways and produces a metabolic checkpoint on the cell cycle though mTORC1, p53 and other modulators involved in cell proliferation, growth, survival and autophagy. The AMPK activity is diminished in gastric, breast and ovarian tumor cells by activated PI3K-AKT pathways. Cancer cells are able to reprogram their energy metabolism to compensate their high bioenergetic demands needed for their aggressive growth and survival. Curcumin exhibits pleiotropic properties and activate MAPK and leads to suppress p53, Wnt/β-catenin, SHH and PI3K-AKT signaling pathways. Curcumin or diferuloylmethane is a yellow polyphenol extracted from the rhizome of turmeric (Curcuma longa). The absorption, biodistribution, metabolism, and elimination studies of curcumin have, unfortunately, shown only poor absorption, rapid metabolism, and elimination of curcumin as major reasons for poor bioavailability of this interesting polyphenolic compound. We have engineered a curcumin-based nanoparticle (Curc-NP) which demonstrates high water solubility. Curc-NP was effectively transported into the cells by nanoparticles through endocytosis and localized around the nuclei in the cytoplasms. In vitro studies proved that the cytotoxicity of Curc-NP is more effective against U-251 cell line in a dose-dependent manner. Systemic delivery of Curc-NP led to preferentially accumulation in an orthotopic preclinical glioma model minimizing systemic toxic effect. Multicolor microscopy images of the tumor tissue showed that Curc-NP particles were internalized inside tumor cells selectively and localized within nuclei. Curc-NP demonstrated to restore the dysregulated AMPK activity in glioma cells. Curc-NP-induced AMPK activation resulted in inhibition of oncogenic signalling pathways in glioma. Curc-NP-induced metabolic reprograming in glioma cells will be examined and the in vivo therapeutic efficacy of Curc-NP in an experimental rat model of GBM will also be evaluated.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2369-2369
Author(s):  
Dushyant Verma ◽  
Kumudha Balakrishnan ◽  
Susan O'Brien ◽  
Deborah A. Thomas ◽  
Alessandra Ferrajoli ◽  
...  

Abstract Abstract 2369 Poster Board II-346 Background: The prognosis of fludarabine-refractory patients is poor and the current salvage regimens produce low CR rates and are unlikely to improve long-term survival in this patient population. Forodesine, an analog inhibitor of the enzyme purine nucleoside phosphorylase (PNP), leads to rise in plasma dGuo levels followed by accumulation of dGTP in T-cells,that results in DNA breakdown and cell apoptosis. Forodesine has exhibited promising clinical activity in T cell leukemia with complete inhibition of PNP during therapy (Gandhi et al, Blood 106:4253, 2005). Previous in-vitro studies conducted by our group demonstrated that forodesine induces caspase dependent cell death in primary CLL cells by accumulating high intracellular dGTP in CLL cells (Balakrishnan et al, Blood 108:2392, 2006). This provided the rationale to test forodesine in B-CLL. Aims: i) to investigate the efficacy (CR + PR) of forodesine in treating patients with advanced, fludarabine-treated CLL, ii) to evaluate the toxicity, duration of response, disease-free survival and overall survival associated with treatment with forodesine, and iii) to correlate PK/PD data of forodesine in CLL with its clinical activity. Methods: Patients with primary resistance to fludarabine-based therapy (no CR or PR) or with progressive disease after response to prior fludarabine based regimen were eligible. The forodesine dose was 200 mg oral once daily, administered continuously up to a maximum of 24 weeks. Blood samples were collected on days 1-5 and day 28 and pharmacokinetic and pharmacodynamic parameters were determined. Ex vivo incubation with forodesine and dGuo were also performed in CLL lymphocytes to compare the treatment effects in vivo and ex vivo investigations. Results: 8 patients were treated, the median age was 62 years (range 51-68), 7 males, median absolute lymphocyte count 35.85 (range 1.4-156.66) × 109/L, median serum beta 2 microglobulin level was 6.45 (range 3.6-16.3) mg/L. Six patients had Rai stage III-IV disease, the, median number of prior therapy was 5 (range 1-10), 5 patients were fludarabine refractory, 5 were ZAP-70 positive. Seven patients are evaluable for response and toxicity. Two patients had a transient decrease in their absolute lymphocyte count to normal level after the first 4 weeks, but it was short lasting. In the other 5 patients, the WBC counts increased progressively and in 3 patients there was also progression in lymphadenopathies. The toxicities observed were mild and included fatigue, bronchitis, diarrhea and low grade fever. Myelosuppression was transient and included neutropenia thrombocytopenia in 3 patients. One patient had pneumonia. The steady-state level of forodesine, measured on day 2, 3, 4, and 5, ranged between 200-1300 nM (n=8). At these concentrations, PNP inhibition in circulating RBCs, ranged between 57 and 89% (n=8). With this extent of PNP inhibition, steady-state dGuo concentration was a median 1.8 μM (range, 0.56 – 4.4 μM, n=8). The starting level of intracellular dGTP was a median 5 μM (range, 0.9 - 7.8 μM, n = 7) which increased to a median 12.5 μM (range 1.9 - 65 μM, n = 7). The circulating lymphocytes did not show annexin positivity above 10% during the first five days of treatment. To determine if CLL lymphocytes accumulate dGTP at high dGuo (10 and 20 μM) levels, we performed ex vivo incubations. Compared to in vivo, higher levels of dGTP were achieved ex vivo with a 10-50% increase in apoptosis. Conclusion: Oral forodesine showed activity with decrease in peripheral lymphocyte counts in 2 of 7 evaluable patients. However, all patients ultimately progressed while on treatment. Side effects were mild. The ex vivo biologic data and in vivo pharmacodynamic and clinical data suggest that forodesine has biological activity, and that alternative dosing schedules should be explored in future CLL trials. Disclosures: Off Label Use: Forodesine is not approved by FDA for treatment of CLL. Bantia:BioCryst: Employment. Gandhi:Mundipharma: Honoraria, Research Funding; Biocryst: Honoraria, Research Funding. Ravandi:Biocryst: Research Funding.


2012 ◽  
Vol 30 (15_suppl) ◽  
pp. 10537-10537
Author(s):  
Dawid Murawa ◽  
Stefanie Herold ◽  
Phillip Sangwook Kim ◽  
Arndt Schmitz ◽  
Thomas Krahn ◽  
...  

10537 Background: In BC, the number of circulating tumor cells (CTCs) is discussed as a prognostic and stratification biomarker, and could also reflect treatment efficacy. Currently, CTCs are isolated ex vivo from a small volume of blood. Results from a larger volume of blood are scarce. The aim of the study was to assess a functionalized and structured medical wire (FSMW) for in vivo capturing of CTCs directly from the blood stream of BC patients. Methods: The device was inserted in a cubital vein through a standard cannula for thirty minutes. The interaction of target CTCs with the FSMW was mediated by antibodies directed against the epithelial cell adhesion molecule (EpCAM). To confirm binding of CTCs to the wire, the immunohistochemical positive staining against EpCAM as well as negative staining for CD45 was performed. There were 54 applications of the wire in 42 stage I-IV BC patients (12 double applications). Enumeration data from 37 BC patients with 49 applications (5 failed subsequent analyses) were assessed. CTC counts on 23 devices were directly compared to counts by CellSearch. Results: The device was well tolerated in all 54 applications without side effects. We obtained in vivo isolation of CTCs in 44 of 49 applications to BC patients (89.7 %). The sensitivity was similar for early and late stage BC patients. The median (range) of isolated EpCAM-positive CTCs was 5 (0-515). The CellSearch method reached a sensitivity of 18.5%. In all paired samples the number of CTCs detected with the FSMW was higher or equal to CellSearch, regardless of the disease stage. Linear regression of the data of the double application of the FSMW showed a very good concordance (r2 = 0.97, p<0.0001). Conclusions: Whilst well tolerated without side effects, the CTC detection rate of the FSMW in BC patients was nearly 90 %. CTC detection was obtained in 18.5% by the CellSearch. Double application of FSMWs in the same patient indicates ample precision. This proof of concept study may have important clinical implications, as the device may improve early detection, prognosis and therapy monitoring of BC patients. The molecular analysis of the captured CTCs could become a breakthrough in personalized medicine.


2020 ◽  
Author(s):  
Ganapathy Sriram ◽  
Lauren Milling ◽  
Jung-Kuei Chen ◽  
Wuhbet Abraham ◽  
Erika D. Handly ◽  
...  

ABSTRACTInhibition of immune checkpoints has shown promising results in the treatment of certain tumor types. However, the majority of cancers do not respond to immune checkpoint inhibition (ICI) treatment, indicating the need to identify additional modalities that enhance the response to immune checkpoint blockade. In this study, we identified a tumor-tailored approach using ex-vivo DNA damaging chemotherapy-treated tumor cells as a live injured cell adjuvant. Using an optimized ex vivo system for dendritic cell-mediated T-cell IFN-γ induction in response to DNA-damaged tumor cells, we identified specific dose-dependent treatments with etoposide and mitoxantrone that markedly enhance IFN-γ production by T-cells. Unexpectedly, the immune-enhancing effects of DNA damage failed to correlate with known markers of immunogenic cell death or with the extent of apoptosis or necroptosis. Furthermore, dead tumor cells alone were not sufficient to promote DC cross-presentation and induce IFN-γ in T-cells. Instead, the enhanced immunogenicity resided in the fraction of injured cells that remained alive, and required signaling through the RIPK1, NF-kB and p38MAPK pathways. Direct in vivo translation of these findings was accomplished by intra-tumoral injection of ex vivo etoposide-treated tumor cells as an injured cell adjuvant, in combination with systemic anti-PD1/CTLA4 antibodies. This resulted in increased intra-tumoral CD103+ dendritic cells and circulating tumor antigen-specific CD8+ T-cells, leading to enhanced anti-tumor immune responses and improved survival. The effect was abrogated in BATF3-deficient mice indicating that BATF3+ DCs are required for appropriate T-cell stimulation by live but injured DNA-damaged tumor cells. Notably, injection of the free DNA-damaging drug directly into the tumor failed to elicit such an enhanced anti-tumor response as a consequence of simultaneous damage to dendritic cells and T-cells. Finally, the DNA damage induced injured cell adjuvant and systemic ICI combination, but not ICI alone, induced complete tumor regression in a subset of mice who were then able to reject tumor re-challenge, indicating induction of a long-lasting anti-tumor immunological memory by the injured cell adjuvant treatment in vivo.


Sign in / Sign up

Export Citation Format

Share Document