scholarly journals PENGARUH WAKTU ULTRASONIKASI TERHADAP KARAKTERISTIK FISIKA NANOPARTIKEL KITOSAN EKSTRAK ETANOL DAUN SUJI (Pleomele angustifolia) DAN UJI STABILITAS FISIKA MENGGUNAKAN METODE CYCLING TEST

2019 ◽  
Vol 16 (02) ◽  
pp. 40
Author(s):  
Malinda Prihantini ◽  
Elya Zulfa ◽  
Listyana Dewi Prastiwi ◽  
Ikha Dyah Yulianti

ABSTRACT The nanoparticle system encapsulates and protects flavonoids of suji leaves from photolysis and oxidation instability. Chitosan is a biocompatible, biodegradable and non-toxic nanoparticles forming polymer. Ultrasonication is a materials mixing technique under high vibration energy. The ultrasonication time affects the particle size. The aim of this study was to determine the effect of the ultrasonication time on physical characteristics of chitosan nanoparticles of suji (Pleomele angustifolia) leaf ethanol extract and its physical stability after cycling test. Ethanol extract of suji leaves (EEDS) was obtained by maceration using 70% ethanol. Chitosan EEDS nanoparticles were made under ionic gelation method using an ultrasonication time of 3 minutes (FI), 6 minutes (FII), and 9 minutes (FIII). The physical characterization of nanoparticles includes particle size, polydispersity index, and zeta potential. Chitosan EEDS nanoparticles with the best physical characteristics (FIII) were tested for stability using cycling test method. The data obtained were analyzed using the Anova statistical method with a 95% confidence level. The size of EEDS chitosan nanoparticles (nm) was significantly different in all formulas, FI (374.47), FII (288.43), and FIII (233.37). The polydispersity index of FI (0.38) and FIII (0.65) were significantly different, while FII (0.41) was not significantly different. The zeta potential (mV) FI (51.70), FII (46.10), and FIII (48.60) were not significantly different in all formulas. The physical characteristics of Formula III after Cycling Test showed a particle size of 455.0 nm, a polydispersity index of 0.174, and a zeta potential of 20.1 mV. Keywords: ultrasonication, nanoparticles, chitosan, cycling test, suji leaf (Pleomele angustifolia)

2020 ◽  
Vol 16 (02) ◽  
pp. 125
Author(s):  
Malinda Prihantini ◽  
Elya Zulfa ◽  
Listyana Dewi Prastiwi ◽  
Ikha Dyah Yulianti

ABSTRACT The nanoparticle system encapsulates and protects flavonoids of suji leaves from photolysis and oxidation instability. Chitosan is a biocompatible, biodegradable and non-toxic nanoparticles forming polymer. Ultrasonication is a materials mixing technique under high vibration energy. The ultrasonication time affects the particle size. The aim of this study was to determine the effect of the ultrasonication time on physical characteristics of chitosan nanoparticles of suji (Pleomele angustifolia) leaf ethanol extract and its physical stability after cycling test. Ethanol extract of suji leaves (EEDS) was obtained by maceration using 70% ethanol. Chitosan EEDS nanoparticles were made under ionic gelation method using an ultrasonication time of 3 minutes (FI), 6 minutes (FII), and 9 minutes (FIII). The physical characterization of nanoparticles includes particle size, polydispersity index, and zeta potential. Chitosan EEDS nanoparticles with the best physical characteristics (FIII) were tested for stability using cycling test method. The data obtained were analyzed using the Anova statistical method with a 95% confidence level. The size of EEDS chitosan nanoparticles (nm) was significantly different in all formulas, FI (374.47), FII (288.43), and FIII (233.37). The polydispersity index of FI (0.38) and FIII (0.65) were significantly different, while FII (0.41) was not significantly different. The zeta potential (mV) FI (51.70), FII (46.10), and FIII (48.60) were not significantly different in all formulas. The physical characteristics of Formula III after Cycling Test showed a particle size of 455.0 nm, a polydispersity index of 0.174, and a zeta potential of 20.1 mV. Keywords: ultrasonication, nanoparticles, chitosan, cycling test, suji leaf (Pleomele angustifolia)


Author(s):  
MAGFIRAH ◽  
INDAH KURNIA UTAMI

Objective: Parang romang (Boehmeria virgata) is one of the traditional medicines that are used empirically by Makassar tribal healers, South Sulawesi, as an antitumor drug. This traditional medicine contains secondary metabolites such as alkaloids, flavonoids, tannins, and saponins. However, secondary metabolites of those leaves extract have low solubility in water. Hence, to be formula, self-nanoemulsifying drug delivery system (SNEDDS) is one of the solutions to increase the extract solubility. Methods: The optimization of two formula optimum SNEDDS parang romang leaves (T80PGMZ and T20PGMZ) was using the simple lattice design (SLD) method which will give 28 SNEDDS formula parang romang leaves each of which the formula is tested for its characteristics as a critical point include emulsification time, % transmittance, drug loading, particle size, zeta potential, polydispersity index, and morphology particle. Results: The results of SNEDDS characterization obtained the optimum formula T80PGMZ with emulsification time 12.6 s, % transmittance 92.21%, drug loading 68.21 ppm, particle size 370.26 nm, zeta potential −31.4 mV, polydispersity index of 0.615, and regular particle morphology with spherical chunks at a magnification of 10,000 times with a particle size of 10 μm. Conclusion: SNEDDS of parang romang leaves extracts that used olive oil as oil phase, Tween 80 as a surfactant, and propylene glycol as the cosurfactant provided nanoemulsion with good characteristics.


2015 ◽  
Vol 2015 ◽  
pp. 1-5 ◽  
Author(s):  
Siti Sarah Omar Zaki ◽  
Mohd Nazmi Ibrahim ◽  
Haliza Katas

Chitosan nanoparticles (CSNPs) have been extensively applied in medical and pharmaceutical fields as promising drug delivery systems. Despite that, the safety of CSNPs remains inadequate and needs further investigation, particularly on hematopoietic stem cells (HSCs). CSNPs were prepared by ionic gelation method and later were characterized for their physical characteristics (particle size and zeta potential). Cytotoxicity of CSNPs was assessed by MTT assay. Particle size was highly influenced by chitosan concentration and molecular weight (medium and high molecular weight (MMW and HMW)). Higher chitosan concentration and molecular weight produced larger nanoparticles. Zeta potential of CSNPs was not significantly affected by chitosan concentrations and molecular weights used in the present study. MMW had a better stability than HMW CSNPs as their particle size and zeta potential were not significantly altered after autoclaving. Cytotoxicity of CSNPs was influenced by zeta potential and particle size. On the other hand, chitosan concentration and molecular weight indirectly influenced cytotoxicity by affecting particle size and zeta potential of CSNPs. In conclusion, cytotoxicity of CSNPs was mainly attributed to their physical characteristics and this opens a strategy to ensure the safety of CSNPs applications in stem cell technology.


2020 ◽  
Vol 04 ◽  
Author(s):  
Ashvini Herimatha ◽  
Shivanand K. Mutta ◽  
Anirbandeep Bose ◽  
Anudeep Balla

Background:: Chitosan nanoparticles have been extensively studied and used due to their well-recognized applicability in various fields. Chitosan, a natural polysaccharide polymer and is extensively used in pharmaceuticals to deliver a wide variety of therapeutic agents. Chitosan is a biocompatible and biodegradable mucoadhesive polymer that has been extensively used in the preparation of multi particles, particularly nano- and microparticles. Objective:: The main aim of the present study was to optimize the conditions for the preparation of chitosan nanoparticles to get optimal particle size, with optimal zeta potential and narrow polydispersity index, and antibacterial activity. Methods:: Methods include the ionic gelation technique for chitosan nanoparticle preparation. The influence of formulation parameters and process parameters on the Chitosan nanoparticles were investigated. Besides, the suspension stability of the prepared nanoparticles is also assessed on storage at 4°C. Results: clearly showed that the formulation and process parameters showed a significant effect on the physicochemical and morphological characteristics of the chitosan nanoparticles. The chitosan nanoparticles prepared under optimum conditions (chitosan concentration of 0.5% w/v, CS: TPP mass ratio of 1:3, initial pH of chitosan solution of 4.5, stirred at 750 rpm for 30 min) had shown a mean particle size of ~326.8±15 nm, the zeta potential of +28.2 ± 0.5 mV, PDI of 0.21 ± 0.02. The encapsulation of the clarithromycin slightly increased the polydispersity index but the zeta potential of the unloaded nanoparticles was not affected while the particle size increased. Under optimum conditions, clarithromycin encapsulation efficiency into nanoparticles was found to be 70%. Additionally, chitosan-tripolyphosphate nanoparticles were shown to be stable for a minimum of fifteen days in deionized water at 4°C. Conclusion:: The current study concludes on the optimal conditions to formulate the chitosan nanoparticles with optimal physicochemical characteristics.


2018 ◽  
Vol 936 ◽  
pp. 3-7 ◽  
Author(s):  
Zormy Nacary Correa-Pacheco ◽  
Silvia Bautista-Baños ◽  
Mónica Hernández-López ◽  
María Luisa Corona-Rangel

Bioactive compounds such as essential oils (EO), botanical extracts and natural resins are well known to have beneficial properties. Among these properties are their antibacterial activity. A disadvantage of these compounds is that they are volatile. Therefore, encapsulation is a good way to overcome this problem. In this study, the morphology, particle size distribution, Zeta potential and microbiological activity of chitosan nanoparticles incorporated with three different bioactive compounds having antimicrobial properties: ethanol extract of propolis, thyme essential oil and ethanol extract of Byrsonima crassifolia (L.) Kunth were evaluated. Nanoparticles were synthesized using the nanoprecipitation method. The morphology was observed using transmission electron microscopy (TEM). Also, particle size distribution and Zeta potential were measured. Results show spherical in shape nanoparticles. Thyme essential oil-loaded chitosan nanoparticles (TEO-CSNPs) showed the smallest particle size and highest stability as assessed by Zeta potential measurement, followed in stability by ethanol extract of propolis-loaded chitosan nanoparticles (EEP-CSNPs), ethanol extract of Byrsonima crassifolia (L.) Kunth (EEBC-CSNPs) and finally by chitosan nanoparticles (CSNPs). The antibacterial activity of the bioactive compounds-loaded chitosan nanoparticles was evaluated against Staphylococcus aureus. The highest antibacterial activity was observed for TEO-CSNPs with an inhibition halo (IH) value of 10.54±0.78 mm, followed by EEP-CSNPs (8.10±1.19 mm). EEBC-CSNPs and CSNPs did not show zone of inhibition. Bioactive compounds-loaded chitosan nanoparticles represents a good alternative for bacterial control of food borne pathogens in applications for fruits and vegetables conservation.


2017 ◽  
Vol 9 ◽  
pp. 124
Author(s):  
Amelia Luthfiah ◽  
Erny Sagita ◽  
Iskandarsyah Iskandarsyah

Objectives: While p-synephrine exhibits lipolytic activity, it also has a low oral bioavailability as well as hydrophilic characteristic, so it is difficult forit to penetrate the epidermis if it is made into transdermal preparation. The purpose of this research was to increase the penetration of p-synephrineby preparing it as transfersome gel.Materials and Methods: Three transfersome formulas were prepared—F1, F2, and F3—with the surfactants used at Tween 80, Span 80, and thecombination of Tween 80 and Span 80 with a ratio of 1:1, respectively.Results: The results showed that F1 was the best formula, with the highest entrapment efficiency, of 64.058±0.754%, a particle size average of103.3 nm, polydispersity index 0.269±0.05, and zeta potential of −36.2±0.64 mV, so this formula was employed for the gel formulation. Two gelformulas were then prepared, transfersome gel (GT) and non transfersome gel (GNT).Conclusions: The two gels were evaluated for their physical stability, and GT was found to be more stable than GNT.


2020 ◽  
Vol 17 (1) ◽  
pp. 172-183
Author(s):  
Nandanwadkar Shrikrishna Madhukar Hema ◽  
Mastiholimath Vinayak Shivamurthy ◽  
Pulija Karunakar

Introduction: Capsaicin (8-methy-N-vanillyl-6-nonenamide), a potential analgesic derived from Capsicum annuum (Chili peppers), widely used from ancient times for its pharmacological activities such as anti-inflammatory, anti-oxidant and analgesic and provides relief from migraine and diabetes. But for obvious reasons, capsaicin cannot be administered directly. The present work was designed with a focus to comply with mandatory requirement in various pharmacopeias to know the actual content of API present in final formulations. The formulation (TS3) consisting of 3% lipid, with 4:6 ratio of the polymer and solvent, was found to be the optimized formulation, which gave the best evaluation with regard to the particle size (97.03±2.68) nm, polydispersity index (0.20±0.00), higher zeta potential (61.28±2.06) mv, morphological studies and highest drug entrapment efficiency (68.34±4.24)%. The prepared transferosome formulation was subjected to characterization by validated HP-TLC method consisting of N-Hexane: Tert- Iso-butyl-methyl ether in ratio (5:15) v/v. Linearity was performed in the range of 50-1500 ng/spot with LOD/LOQ 50 ng and 150 ng, with regression analysis (R) of 99.91%. Recovery analysis was performed at 3 different levels at 80, 100 and 120 with an average recovery of 106.97%, respectively. Till now, no analytical method has been reported, associated with the characterization of pharmaceutical nano-forms (Capsaicin), like transferosomes. Thus, the maiden validated HP-TLC method for concurrent analysis of capsaicin as API in nano-transferosome may be employed in process quality control of formulations containing the said API. Background: The irritability and adverse effects post application, leading to inflammation and neural pain at the site of administration of newly Capsaicin API and its chemical entities and marketed formulations are usually related to poor permeability, leading to drug complex reactions in the development phases or therapeutic failure along with the quantification of the same in blood plasma. However, advancement in drug formulations with the use of polymer: alcohol ratio and modernized analytical techniques for the quantification of Pharmaceutical APIs seems to be emerging and promising for overcoming pain and related inflammatory complications by formulating the APIs in Transferosome formulation with Validated HP-TLC technique being used as an effective economic and precise tool for quantitative analysis of APIs in their respective nano-forms. Objective: The study proposes a novel standardized method development and validation of pharmaceutical nanoforms with Capsaicin as API. Method: Capsaicin Transferosomes were formulated using Ultra probe sonication by utilizing different proportions of phospholipid 90G dissolved in a mixture of ethanol and propylene glycol. The formulation was subjected to Dynamic Light Scattering (DLS) technique for nano-particle analysis followed by characterization with respect to particle size, polydispersity index, zeta potential and entrapment efficiency. The morphological study of vesicles was determined using SEM and TEM. A Validated HP-TLC method for the identification and determination of Capsaicin in transferosomes formulation was performed as per the ICH guidelines. Results: The formulation gave the best evaluation for particle size (97.03±2.68) nm, polydispersity index (0.20±0.00), higher zeta potential (61.28±2.06) mv, morphological studies (SEM & TEM) and highest drug entrapment efficiency (68.34±4.24)%. DSC thermograms and FTIR spectral patterns confirmed no physical interaction by polymers with API. The prepared formulation was then characterized using HP-TLC method. The best resolution was found in NHexane: Tert-Isobutyl methyl ether in a ratio of 5:15 v/v. The Rf was found to be 0.3±0.03. Linearity was performed in a range of 50-1500 ng/spot, with regression analysis (R) of 99.91% Further, recovery analysis was done at 3 different levels as 80, 100 and 120 with an average recovery of 106.97%. The LOD/LOQ was found to be 50 and 150 ng, respectively. Precision was carried out in which % RSD was found to be precise and accurate. Conclusion: The outcomes of the present study suggested that the proposed novel formulation analyzed by Validated planar chromatographic technique (HP-TLC) for Capsaicin quantification in nanoforms may be employed as a routine quality control method for the said API in various other formulations.


Polymers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 677
Author(s):  
Sara A. Abosabaa ◽  
Aliaa N. ElMeshad ◽  
Mona G. Arafa

The objective of the present research is to propose chitosan as a nanocarrier for caffeine—a commonly used drug in combating cellulite. Being a hydrophilic drug, caffeine suffers from insufficient topical penetration upon application on the skin. Chitosan nanoparticles loaded with caffeine were prepared via the ionic gelation technique and optimized according to a Box–Behnken design. The effect of (A) chitosan concentration, (B) chitosan solution pH, and (C) chitosan to sodium tripolyphosphate mass ratio on (Y1) entrapment efficiency percent, (Y2) particle size, (Y3) polydispersity index, and (Y4) zeta potential were studied. Subsequently, the desired constraints on responses were applied, and validation of the optimization procedure was confirmed by the parameters exhibited by the optimal formulation. A caffeine entrapment efficiency percent of 17.25 ± 1.48%, a particle size of 173.03 ± 4.32 nm, a polydispersity index of 0.278 ± 0.01, and a surface charge of 41.7 ± 3.0 mV were attained. Microscopical evaluation using transmission electron microscope revealed a typical spherical nature of the nanoparticles arranged in a network with a further confirmation of the formation of particles in the nano range. The results proved the successful implementation of the Box–Behnken design for optimization of chitosan-based nanoparticles in the field of advanced polymeric systems for pharmaceutical and cosmeceutical applications.


Author(s):  
RISA AHDYANI ◽  
LARAS NOVITASARI ◽  
RONNY MARTIEN

Objective: The objectives of this study were to formulate and characterize nanoparticles gel of timolol maleate (TM) by ionic gelation method using chitosan (CS) and sodium alginate (SA). Methods: Optimization was carried out by factorial design using Design Expert®10.0.1 software to obtain the concentration of CS, SA, and calcium chloride (CaCl2) to produce the optimum formula of TM nanoparticles. The optimum formula was characterized for particle size, polydispersity index, entrapment efficiency, Zeta potential, and molecular structure. Hydroxy Propyl Methyl Cellulose (HPMC) K15 was incorporated into optimum formula to form nanoparticles gel of TM and carried out in vivo release study using the Franz Diffusion Cell. Results: TM nanoparticles was successfully prepared with concentration of CS, SA, and CaCl2 of 0.01 % (w/v), 0.1 % (w/v), and 0.25 % (w/v), respectively. The particle size, polydispersity index, entrapment efficiency, and Zeta potential were found to be 200.47±4.20 nm, 0.27±0.0154, 35.23±4.55 %, and-5.68±1.80 mV, respectively. The result of FTIR spectra indicated TM-loaded in the nanoparticles system. In vitro release profile of TM-loaded nanoparticles gel showed controlled release and the Korsmeyer-Peppas model was found to be the best fit for drug release kinetics. Conclusion: TM-loaded CS/SA nanoparticles gel was successfully prepared and could be considered as a promising candidate for controlled TM delivery of infantile hemangioma treatment.


2015 ◽  
Vol 51 (2) ◽  
pp. 467-477 ◽  
Author(s):  
Abdul Baquee Ahmed ◽  
Ranjit Konwar ◽  
Rupa Sengupta

<p>In this study, we prepared atorvastatin calcium (AVST) loaded chitosan nanoparticles to improve the oral bioavailability of the drug. Nanoparticles were prepared by solvent evaporation technique and evaluated for its particle size, entrapment efficiency, zeta potential, <italic>in vitro</italic> release and surface morphology by scanning electron microscopy (SEM). In addition, the pharmacokinetics of AVST from the optimized formulation (FT5) was compared with marketed immediate release formulation (Atorva<sup>(r))</sup> in rabbits. Particle size of prepared nanoparticles was ranged between 179.3 ± 7.12 to 256.8 ± 8.24 nm with a low polydispersity index (PI) value. Zeta potential study showed that the particles are stable with positive values between 13.03 ± 0.32 to 46.90 ± 0.49 mV. FT-IR studies confirmed the absence of incompatibility of AVST with excipient used in the formulations. <italic>In vitro</italic> release study showed that the drug release was sustained for 48 h. Results of pharmacokinetics study showed significant changes in the pharmacokinetic parameter (2.2 fold increase in AUC) of the optimized formulation as compared to marketed formulation (Atorva<sup>(r))</sup>. Thus, the developed nanoparticles evidenced the improvement of oral bioavailability of AVST in rabbit model.</p>


Sign in / Sign up

Export Citation Format

Share Document