Research on sports simulation and fatigue characteristics of athletes based on machine learning

2020 ◽  
pp. 1-12
Author(s):  
Guangqi Li

The research on the fatigue characteristics of athletes has a certain role in promoting the development of sports. In order to detect fatigue more accurately in the state of human fatigue, this article uses a method of fusing characteristic information of many physiological parameters related to fatigue to design a multi-physical parameter-based exercise fatigue recognition method with high research value and significance. Moreover, this study combines machine learning technology to construct a dynamic fatigue detection system based on BP neural network and multiple physiological parameters. In addition, this study uses samples to construct a BP neural network and achieves dynamic detection of fatigue through multiple physiological parameters. Finally, by constructing controlled trials, fatigue is predicted. The results show that the predicted output of the fatigue value is in good agreement with the expected output, and the research method has certain practical effects.

2020 ◽  
pp. 1-12
Author(s):  
Guohua Wei ◽  
Yi Jin

At present, data is in a state of explosive growth. The rapid growth of data collected by enterprises has exceeded the processing capacity of traditional human resource management systems, resulting in their inability to perform data management and data analysis. In order to improve the practicality of the human resource management system, this paper applies machine learning technology to the human resource management system, selects dimensions according to the prediction method, and builds a combined model consisting of an optimized GM (1,1) model and a BP neural network model. The model is implemented by a three-layer BP neural network. In order to verify the performance of the research model, this article conducts research using an entity as an example. The research results show that the method proposed in this paper has certain practical effects and can improve the reference for subsequent related research.


2020 ◽  
Vol 10 (18) ◽  
pp. 6417 ◽  
Author(s):  
Emanuele Lattanzi ◽  
Giacomo Castellucci ◽  
Valerio Freschi

Most road accidents occur due to human fatigue, inattention, or drowsiness. Recently, machine learning technology has been successfully applied to identifying driving styles and recognizing unsafe behaviors starting from in-vehicle sensors signals such as vehicle and engine speed, throttle position, and engine load. In this work, we investigated the fusion of different external sensors, such as a gyroscope and a magnetometer, with in-vehicle sensors, to increase machine learning identification of unsafe driver behavior. Starting from those signals, we computed a set of features capable to accurately describe the behavior of the driver. A support vector machine and an artificial neural network were then trained and tested using several features calculated over more than 200 km of travel. The ground truth used to evaluate classification performances was obtained by means of an objective methodology based on the relationship between speed, and lateral and longitudinal acceleration of the vehicle. The classification results showed an average accuracy of about 88% using the SVM classifier and of about 90% using the neural network demonstrating the potential capability of the proposed methodology to identify unsafe driver behaviors.


2020 ◽  
pp. 808-817
Author(s):  
Vinh Pham ◽  
◽  
Eunil Seo ◽  
Tai-Myoung Chung

Identifying threats contained within encrypted network traffic poses a great challenge to Intrusion Detection Systems (IDS). Because traditional approaches like deep packet inspection could not operate on encrypted network traffic, machine learning-based IDS is a promising solution. However, machine learning-based IDS requires enormous amounts of statistical data based on network traffic flow as input data and also demands high computing power for processing, but is slow in detecting intrusions. We propose a lightweight IDS that transforms raw network traffic into representation images. We begin by inspecting the characteristics of malicious network traffic of the CSE-CIC-IDS2018 dataset. We then adapt methods for effectively representing those characteristics into image data. A Convolutional Neural Network (CNN) based detection model is used to identify malicious traffic underlying within image data. To demonstrate the feasibility of the proposed lightweight IDS, we conduct three simulations on two datasets that contain encrypted traffic with current network attack scenarios. The experiment results show that our proposed IDS is capable of achieving 95% accuracy with a reasonable detection time while requiring relatively small size training data.


2020 ◽  
Vol 58 (6) ◽  
pp. 413-422
Author(s):  
Jinyeong Yu ◽  
Myoungjae Lee ◽  
Young Hoon Moon ◽  
Yoojeong Noh ◽  
Taekyung Lee

Electropulse-induced heating has attracted attention due to its high energy efficiency. However, the process gives rise to a nonlinear temperature variation, which is difficult to predict using a traditional physics model. As an alternative, this study employed machine-learning technology to predict such temperature variation for the first time. Mg alloy was exposed to a single electropulse with a variety of pulse magnitudes and durations for this purpose. Nine machine-learning models were established from algorithms from artificial neural network (ANN), deep neural network (DNN), and extreme gradient boosting (XGBoost). The ANN models showed an insufficient predicting capability with respect to the region of peak temperature, where temperature varied most significantly. The DNN models were built by increasing model complexity, enhancing architectures, and tuning hyperparameters. They exhibited a remarkable improvement in predicting capability at the heating-cooling boundary as well as overall estimation. As a result, the DNN-2 model in this group showed the best prediction of nonlinear temperature variation among the machinelearning models built in this study. The XGBoost model exhibited poor predicting performance when default hyperparameters were applied. However, hyperparameter tuning of learning rates and maximum depths resulted in a decent predicting capability with this algorithm. Furthermore, XGBoost models exhibited an extreme reduction in learning time compared with the ANN and DNN models. This advantage is expected to be useful for predicting more complicated cases including various materials, multi-step electropulses, and electrically-assisted forming.


Fire ◽  
2021 ◽  
Vol 4 (4) ◽  
pp. 93
Author(s):  
Xiangsheng Lei ◽  
Jinwu Ouyang ◽  
Yanfeng Wang ◽  
Xinghua Wang ◽  
Xiaofeng Zhang ◽  
...  

The panel performance of a prefabricated cabin-type substation under the impact of fires plays a vital role in the normal operation of the substation. However, current evaluations of the panel performance of substations under fire still focus on fire resistance tests, which seldom consider the relationship between fire behavior and the mechanical load of the panel under the impact of fires. Aiming at the complex and uncertain relationship between the thermal and mechanical performance of the substation panel under impact of fires, this paper proposes a machine learning method based on a BP neural network. First, the fire resistance test and the stress test of the panel is carried out, then a machine learning model is established based on the BP neural network. According to the collected data, the model parameters are obtained through a series of training and verification processes. Meanwhile, the correlation between the panel performance and fire resistance was obtained. Finally, related parameters are input into the thermal–mechanical coupling evaluation model for the substation panel performance to evaluate the fire resistance performance of the substation panel. To verify the correctness of the established model, numerical simulation of the fire test and stress test of the panel is conducted, and numerical simulation samples are predicted by the trained model. The results show that the prediction curve of neural network is closer to the real results compared with the numerical simulation, and the established model can accurately evaluate the thermal–mechanical coupling performance of the substation panel under fire.


Author(s):  
Kensuke Naoe ◽  
Hideyasu Sasaki ◽  
Yoshiyasu Takefuji

The Service-Oriented Architecture (SOA) demands supportive technologies and new requirements for mobile collaboration across multiple platforms. One of its representative solutions is intelligent information security of enterprise resources for collaboration systems and services. Digital watermarking became a key technology for protecting copyrights. In this article, the authors propose a method of key generation scheme for static visual digital watermarking by using machine learning technology, neural network as its exemplary approach for machine learning method. The proposed method is to provide intelligent mobile collaboration with secure data transactions using machine learning approaches, herein neural network approach as an exemplary technology. First, the proposed method of key generation is to extract certain type of bit patterns in the forms of visual features out of visual objects or data as training data set for machine learning of digital watermark. Second, the proposed method of watermark extraction is processed by presenting visual features of the target visual image into extraction key or herein is a classifier generated in advance by the training approach of machine learning technology. Third, the training approach is to generate the extraction key, which is conditioned to generate watermark signal patterns, only if proper visual features are presented to the classifier. In the proposed method, this classifier which is generated by the machine learning process is used as watermark extraction key. The proposed method is to contribute to secure visual information hiding without losing any detailed data of visual objects or any additional resources of hiding visual objects as molds to embed hidden visual objects. In the experiments, they have shown that our proposed method is robust to high pass filtering and JPEG compression. The proposed method is limited in its applications on the positions of the feature sub-blocks, especially on geometric attacks like shrinking or rotation of the image.


Author(s):  
Mouhammd Sharari Alkasassbeh ◽  
Mohannad Zead Khairallah

Over the past decades, the Internet and information technologies have elevated security issues due to the huge use of networks. Because of this advance information and communication and sharing information, the threats of cybersecurity have been increasing daily. Intrusion Detection System (IDS) is considered one of the most critical security components which detects network security breaches in organizations. However, a lot of challenges raise while implementing dynamics and effective NIDS for unknown and unpredictable attacks. Consider the machine learning approach to developing an effective and flexible IDS. A deep neural network model is proposed to increase the effectiveness of intrusions detection system. This chapter presents an efficient mechanism for network attacks detection and attack classification using the Management Information Base (MIB) variables with machine learning techniques. During the evaluation test, the proposed model seems highly effective with deep neural network implementation with a precision of 99.6% accuracy rate.


Sign in / Sign up

Export Citation Format

Share Document