scholarly journals MAIN PRE-DESIGN OF THE PROCESS FOR PRODUCING BENZENE-1,2,4,5-TETRACARBOXYLIC ACID

Author(s):  
S. S. Zakharov ◽  
T. V. Chelyuskina

Preliminary studies on the initial stage of the development of the industrial process for producing the desired product play a decisive role in choosing the type of raw materials and an efficient catalytic system. These parameters determine the number of possible waste byproducts, the target product purity and the resulting energy costs. In this article we compared the choice of raw materials and catalytic systems for the industrial scale production of benzene-1,2,4,5-tetracarboxylic acid, which is widely used in the production of organic products of great economic importance.

2021 ◽  
Vol 9 ◽  
Author(s):  
A. Palomo ◽  
O. Maltseva ◽  
I. Garcia-Lodeiro ◽  
A. Fernández-Jiménez

This review undertakes rigorous analysis of much of the copious literature available to the scientific community on the use of alkali-activated binders (AABs) in construction. The authors’ main intention is to categorically refute arguments of that part of the scientific community underestimating or even dismissing the actual potential of AABs as alternatives to Portland cement (PC). The main premise invoked in support of those arguments is a presumed lack of material resources for precursors that would make AAB industrial-scale production unfeasible anywhere on the planet (a substantial number of scientific papers show that the raw materials required for AAB manufacture are in abundance worldwide). The review also analyses the role of alkaline activators in the chemistry of AABs; it is important to clarify and highlight that alkaline activators are not, by any means, confined to the two synthetic products (caustic soda and waterglass) mostly employed by researchers; other sustainable and efficient products are widely available. Finally, the review deals with the versatility of AAB production processes. The technologies required for the large scale manufacturing of AABs are mostly already in place in PC factories; actually no huge investment is required to transform a PC plant in a AAB factory; and quality and compositional uniformity of Alkaline Cements (binders produced through an industrial process) would be guaranteed. The last conclusions extracted from this review-paper are related with: i) the low carbon footprint of one-part AABs and ii) the urgent need of exploring standardization formulas allowing the commercial development of (sustainable) binders different from PC.


Foods ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 554 ◽  
Author(s):  
Duy Doan ◽  
Duc Luu ◽  
Thanh Nguyen ◽  
Bich Hoang Thi ◽  
Hong Pham Thi ◽  
...  

Soybeans offer an abundant source of isoflavones, which confer useful bioactivities when existing in aglycone forms. The conversion of isoflavones into aglycones via fermentation of soybean products is often realized by β-glucosidase, an enzyme produced by fungi. In this study, a filamentous fungus, Clerodendron cyrtophyllum, was isolated from root of Clerodendron cyrtophyllum Turcz, which was able to produce the highest activity of β-glucosidase up to 33.72 U/mL at 144 h during fermentation on Potato Dextrose Broth (PDB). The obtained fungus was grown on isoflavones-rich soybean extract to produce genistein and daidzein, achieving the conversion rate of 98.7%. Genistein and daidzein were isolated and purified by column chromatography using hexane/acetone (29:1/1:1), reaching purities of over 90% of total isoflavones, as identified and determined by TLC, LC-MS/MS, and 1H and 13C NMR spectroscopy. These results imply that the isolated P. citrinum is a potential fungal strain for industrial-scale production of genistein and daidzein from isoflavones-containing soybean extracts. These products may serve as potential raw materials for manufacture of functional foods that are based on aglycones.


2009 ◽  
Vol 630 ◽  
pp. 77-84 ◽  
Author(s):  
Guillaume Girard ◽  
J. Barresi ◽  
C. Dupuis ◽  
G. Riverin

Scrap rate, throughput, alloy recovery and raw materials are all areas of the casthouse which usually get substantial attention as means of either increasing profits or reducing costs. However, furnaces, which are often overlooked by the casthouse, can also deliver surprisingly high savings. Moreover, these potential savings can only magnify as energy costs and pressures to reduce carbon footprint increase. This paper gives an insight into where savings can be achieved by a casthouse with proper furnace operation. Knowledge of how a furnace should be operated is often neglected but as this paper tries to highlight, developing this knowledge can be extremely worthwhile.


2017 ◽  
Vol 10 (1) ◽  
pp. 77-88 ◽  
Author(s):  
Ashraf F. El-Baz ◽  
Hesham A. El-Enshasy ◽  
Yousseria M. Shetaia ◽  
Hoda Mahrous ◽  
Nor Zalina Othman ◽  
...  

Author(s):  
K. Boddenberg ◽  
B. Kock ◽  
M. Dorfman ◽  
L. Russo ◽  
M. Nestler

Abstract Air separation plants use centrifugal compressors where air and electrical energy are the only raw materials used in the production process. So energy costs play a crucial role and the compressors are heavily penalized when guaranteed performance levels are not achieved. In order to better generate performance, abradable coatings, previously used in the gas turbine industry, have been designed into turbocompressors. This paper will show the optimization and performance improvements of a new aluminium silicon-boron nitride material.


2021 ◽  
Vol 23 (1) ◽  
pp. 11-17
Author(s):  
Siti Nur Jannah ◽  
Yumna Rahmadias Hanifa ◽  
Adi Budi Utomo ◽  
Ashar Kurnia Dian Prambodo ◽  
Arina Tri Lunggani

Marine organism is one of the riches in the ocean of Indonesia. The benefits of sea use for new products produced are widely used and have high market demand. Enzymes that have marine interests have unique properties and have good benefits for industry. This study aims to isolate the bacteria that have symbionts with Padina sp and determine the potential of the enzyme hydrolase produced by these bacteria. Isolation is done by the spread plate method. Pure isolates obtained were then tested for the potential of the enzyme hydrolase on selective media. Clear zone measurements are performed to determine which bacterial isolates are good for enzyme production. The results obtained by 6 isolates of pure bacteria, all of which include Gram negative bacteria that form bacilli. All isolates had the ability to produce different Protease, Lipase, Amylase and Cellulase enzymes. The enzymes obtained from these symbiotic bacteria are expected to be used for industrial-scale production in Indonesia. In addition, the presence of this symbiont bacteria is able to reduce the level of exploitation of Padina sp and contribute to preserving the marine ecosystem.


Polymers ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1197 ◽  
Author(s):  
Warren Blunt ◽  
David Levin ◽  
Nazim Cicek

Microbial polyhydroxyalkanoates (PHAs) are promising biodegradable polymers that may alleviate some of the environmental burden of petroleum-derived polymers. The requirements for carbon substrates and energy for bioreactor operations are major factors contributing to the high production costs and environmental impact of PHAs. Improving the process productivity is an important aspect of cost reduction, which has been attempted using a variety of fed-batch, continuous, and semi-continuous bioreactor systems, with variable results. The purpose of this review is to summarize the bioreactor operations targeting high PHA productivity using pure cultures. The highest volumetric PHA productivity was reported more than 20 years ago for poly(3-hydroxybutryate) (PHB) production from sucrose (5.1 g L−1 h−1). In the time since, similar results have not been achieved on a scale of more than 100 L. More recently, a number fed-batch and semi-continuous (cyclic) bioreactor operation strategies have reported reasonably high productivities (1 g L−1 h−1 to 2 g L−1 h−1) under more realistic conditions for pilot or industrial-scale production, including the utilization of lower-cost waste carbon substrates and atmospheric air as the aeration medium, as well as cultivation under non-sterile conditions. Little development has occurred in the area of fully continuously fed bioreactor systems over the last eight years.


1989 ◽  
pp. 41-49 ◽  
Author(s):  
O. Albrecht ◽  
T. Ginnai ◽  
A. Harrington ◽  
D. Marr-Leisy ◽  
V. Rodov

Author(s):  
V. S. Boltovsky

Prospects for the development of hydrolysis production are determined by the relevance of industrial use of plant biomass to replace the declining reserves of fossil organic raw materials and increasing demand for ethanol, especially for its use as automobile fuel, protein-containing feed additives that compensate for protein deficiency in feed production, and other products. Based on the review of the research results presented in the scientific literature, the analysis of modern methods of liquid-phase acid hydrolysis of cellulose and various types of plant raw materials, including those that differ from traditional ones, is performed. The main directions of increasing its efficiency through the use of new catalytic systems and process conditions are identified. It is shown that the most promising methods for obtaining monosaccharides in hydrolytic processing of cellulose and microcrystalline cellulose, pentosan-containing agricultural waste and wood, are methods for carrying out the process at elevated and supercritical temperatures (high-temperature hydrolysis), the use of new types of solid-acid catalysts and ionic liquids. 


2021 ◽  
Vol 9 ◽  
Author(s):  
Rebeca González-Cabaleiro ◽  
Jake A. Thompson ◽  
Laia Vilà-Nadal

Fast and reliable industrial production of ammonia (NH3) is fundamentally sustaining modern society. Since the early 20th Century, NH3 has been synthesized via the Haber–Bosch process, running at conditions of around 350–500°C and 100–200 times atmospheric pressure (15–20 MPa). Industrial ammonia production is currently the most energy-demanding chemical process worldwide and contributes up to 3% to the global carbon dioxide emissions. Therefore, the development of more energy-efficient pathways for ammonia production is an attractive proposition. Over the past 20 years, scientists have imagined the possibility of developing a milder synthesis of ammonia by mimicking the nitrogenase enzyme, which fixes nitrogen from the air at ambient temperatures and pressures to feed leguminous plants. To do this, we propose the use of highly reconfigurable molecular metal oxides or polyoxometalates (POMs). Our proposal is an informed design of the polyoxometalate after exploring the catabolic pathways that cyanobacteria use to fix N2 in nature, which are a different route than the one followed by the Haber–Bosch process. Meanwhile, the industrial process is a “brute force” system towards breaking the triple bond N-N, needing high pressure and high temperature to increase the rate of reaction, nature first links the protons to the N2 to later easier breaking of the triple bond at environmental temperature and pressure. Computational chemistry data on the stability of different polyoxometalates will guide us to decide the best design for a catalyst. Testing different functionalized molecular metal oxides as ammonia catalysts laboratory conditions will allow for a sustainable reactor design of small-scale production.


Sign in / Sign up

Export Citation Format

Share Document