scholarly journals Behavior of Reinforced Concrete Beams Strengthened by CFRP and Wire Rope

2018 ◽  
Vol 1 (3) ◽  
pp. 1-17
Author(s):  
Aziz Ibrahim Abdulla ◽  
Khalid Naji Mahasneh ◽  
Mohammad W Shaheen ◽  
Ammar Saleem Khazaal ◽  
Muataz Ibrahim Ali

The current research aims to study the effect of static loads on concrete beams strengthened by wire rope. Each beam was subjected to a central concentrated load with an average loading speed of 1 kN/min. The use of steel wire rope has been suggested as a new economical technique to strengthen and rehabilitate reinforced concrete beams, as well as to support the CFRP used in strengthening. The best results were obtained when using either CFRP and wire rope together, or wire rope on its own. It was found that strengthening by CFRP and wire rope increased the flexural strength, hardness, and toughness, and decreased the maximum deflection. Furthermore, the use of wire ropes with CFRP increased the splitting strength and prevented the concrete cover separation between CFRP and concrete. The use of wire rope is a new technique that significantly enhances the performance of concrete in flexure. Using a combination of wire ropes and CFRP, and wire rope on its own showed an increase in stiffness up to about 135.24% and 72.13%, and a reduction in ultimate deflection up to about 70.31% and 49.1%, respectively as compared with control beams. Wire ropes can be used in various forms to resist flexure, shear, and torsion stresses due to ease of formation per required shape. Moreover, its efficiency can be enhanced by increasing the rope’s diameter or reducing the spacing between the wrapped rope’s segments. This renders strengthening by wire rope a new, efficient, and economic technology. © Copyright 2018 JASET, International Scholars and Researchers Association

2018 ◽  
Vol 80 (5) ◽  
Author(s):  
Yanuar Haryanto ◽  
Buntara Sthenly Gan ◽  
Arnie Widyaningrum ◽  
Nanang Gunawan Wariyatno ◽  
Ari Fadli

This work investigated the performance of steel wire rope as an external strengthening for reinforced concrete beams with different end-anchor types. A study is conducted on reinforced concrete beams with the size of 100 mm x 150 mm x 1000 mm, consisting of 1 beam without strengthening (BTP); 1 beam strengthened with 2 steel wire ropes of diameter 6 mm with end-anchor type 1 (BPA1); and 1 beam strengthened with 2 steel wire ropes of diameter 6 mm with end-anchor type 2 (BPA2). It is found that the external strengthening of reinforced concrete beams using steel wire rope has the advantage of better serviceability due to its higher ductility than the beam without strengthening. The load-carrying capacity of reinforced concrete beams, which are externally strengthened with steel wire ropes, shows a significant increase of up to 60%. All specimens meet the minimum ductility requirements; in this case, the strengthening beams have other advantages, i.e. improved performance in preventing brittle failure. In this study, the increased stiffness is associated proportionately with the increased strength. This is supported by previous findings which suggest that the stiffness cannot be completely separated and independent of the strength. The failure in all specimens appeared in the same phases and all specimens experienced flexural failure. The ratios of end-anchor type 1 to end-anchor type 2 were close to 1 for all the parameters studied, which means that both types of end-anchor make an equally good contribution to the performance of steel wire rope.


2012 ◽  
Vol 252 ◽  
pp. 17-22
Author(s):  
Chuan Wang ◽  
Li Li Sui ◽  
Qing Duo Hao ◽  
Qi Yu Lu

The different mechanical property determines the difference on cracking behavior between GFRP/steel wire composite rebar reinforced concrete beams and steel rebar reinforced concrete beams according to cracking mechanics. In order to study the cracking behavior of concrete beams reinforced with GFRP/ steel wire composite rebar, five simply-supported beams were tested under three-point static load. The test variables were beam section size and concrete cover depth. Based on analysis on the test results, the calculation methods of cracking capacity and maximum crack width were proposed, and the limit value of crack width was suggested.


2011 ◽  
Vol 94-96 ◽  
pp. 1278-1285
Author(s):  
Chun Sheng Zhang ◽  
Mei Xiang Zhang ◽  
Ya Hong Ding

A new reinforcement technology with prestressed helical rib steel wire bonded in sawed grooves in the concrete cover is presented, based on the deficiency of the presented reinforcement methods. Four test beams NSM prestressed steel spiral ribs are tested in this paper. The stiffness expression of the reinforced concrete beams in different stages is derived and the stiffness formulas of the reinforced concrete beams are gained, based on the general deformation principles of reinforced concrete beams and the characteristics of the reinforced concrete beam NSM prestressed steel spiral ribs. The results of the calculation and the experimental results show good agreement. It shows that the reinforced concrete beam NSM prestressed steel spiral ribs can effectively delay the development of cracks, reduce the component deformation and increase its stiffness. The results provide an experimental basis for the reinforcement method in practical engineering applications.


2018 ◽  
Vol 1 (1) ◽  
pp. 30-42
Author(s):  
Muataz Ibrahim Ali ◽  
Yaseen Ali Saleh ◽  
Luna Ehab Al Hasani ◽  
Ammar Saleem Khazaal ◽  
Aziz I. Abdulla

The current research aims to study the effect of impact loads on reinforced concrete beams strengthened by carbon fibers and/or steel wire rope. The use of steel wire rope is suggested as a new economic technique to strengthen and rehabilitate reinforced concrete beams, as well as to fix the fibers that are being used in strengthening. Reinforced concrete beams subjected to impact load using both carbon fibers and steel wire rope were tested, and the results were compared with the results obtained from reference beams, from beams strengthened with steel wire rope only, and from beams strengthened with carbon fibers only. The results of concrete beams strengthened using any of the three methods and subjected to impact loading showed a decrease in maximum deflection, residual deflection, damping time, and in the number of strikes to reach each phase of failure. The best results, however, were attained when strengthening using steel rope with and without the addition of carbon fibers, which improved the values of dynamic deflection, residual deflection, damping time, and the number of strikes to reach each phase of failure, when compared to beams strengthened by CFRP strips only.


2011 ◽  
Vol 368-373 ◽  
pp. 307-311
Author(s):  
Dong Qi Zhao ◽  
Yi Jun Tang ◽  
Hui Li ◽  
Gui Feng Song ◽  
Feng Ling Guan

Reinforced concrete cover in the road culvert cover design, in order to facilitate the construction, usually using precast reinforced concrete solid slab, but the overall cost is not low. This article researched a reinforced concrete multi-ribbed hollow composite slab, it based on the theory of reinforced concrete multi-ribbed slab structures, using a precast reinforced concrete ribbed slab as the bottom die, then poured reinforced concrete beams and panels rib ,and them constituted a whole stack of reinforced concrete ribbed hollow slab. This kind of cover, compared with the precast reinforced concrete solid cover, is not only good mechanical properties, high integrity, but also saving concrete, steel, and bottom slab appeared smooth and fine, lower construction cost.


Author(s):  
Paolo Foraboschi

Renovation, restoration, remodeling, refurbishment, and retrofitting of build-ings often imply modifying the behavior of the structural system. Modification sometimes includes applying forces (i.e., concentrated loads) to beams that before were subjected to distributed loads only. For a reinforced concrete structure, the new condition causes a beam to bear a concentrated load with the crack pattern that was produced by the distributed loads that acted in the past. If the concentrated load is applied at or near the beam’s midspan, the new shear demand reaches the maximum around the midspan. But around the midspan, the cracks are vertical or quasi-vertical, and no inclined bar is present. So, the actual shear capacity around the midspan not only is low, but also can be substantially lower than the new demand. In order to bring the beam capacity up to the demand, fiber-reinforced-polymer composites can be used. This paper presents a design method to increase the concentrated load-carrying capacity of reinforced concrete beams whose load distribution has to be changed from distributed to concentrated, and an analytical model to pre-dict the concentrated load-carrying capacity of a beam in the strengthened state.


2020 ◽  
Vol 857 ◽  
pp. 162-168
Author(s):  
Haidar Abdul Wahid Khalaf ◽  
Amer Farouk Izzet

The present investigation focuses on the response of simply supported reinforced concrete rectangular-section beams with multiple openings of different sizes, numbers, and geometrical configurations. The advantages of the reinforcement concrete beams with multiple opening are mainly, practical benefit including decreasing the floor heights due to passage of the utilities through the beam rather than the passage beneath it, and constructional benefit that includes the reduction of the self-weight of structure resulting due to the reduction of the dead load that achieves economic design. To optimize beam self-weight with its ultimate resistance capacity, ten reinforced concrete beams having a length, width, and depth of 2700, 100, and 400 mm, respectively were fabricated and tested as simply supported beams under one incremental concentrated load at mid-span until failure. The design parameters were the configuration and size of openings. Three main groups categorized experimental beams comprise the same area of openings and steel reinforcement details but differ in configurations. Three different shapes of openings were considered, mainly, rectangular, parallelogram, and circular. The experimental results indicate that, the beams with circular openings more efficient than the other configurations in ultimate load capacity and beams stiffness whereas, the beams with parallelogram openings were better than the beams with rectangular openings. Commonly, it was observed that the reduction in ultimate load capacity, for beams of group I, II, and III compared to the reference solid beam ranged between (75 to 93%), (65 to 93%), and (70 to 79%) respectively.


2010 ◽  
Vol 452-453 ◽  
pp. 197-200 ◽  
Author(s):  
Zhen Qing Wang ◽  
Zhi Cheng Xue ◽  
Mu Qiao

For the mechanical properties of reinforced concrete under high temperature with large deterioration, the reliability of reinforced concrete beams have been largely discounted. A calculation of fire resistance based on failure probability is given by this paper. Reinforced concrete beam is usually working with cracks. Since each section with cracks has possibility of destruction, the reliability of the beam is calculated by the minimum value of n crack-sections’ resistance. The plastic zone resistance of concrete under high temperature is considered in this paper. A simple and feasible time-variant model of the resistance of reinforced concrete beams under fire and a reliability index analysis method of reinforced concrete beams under fire has been given. The action of ISO834 temperature rising curve on the reliability index of different specifications of concrete beams at different time is analyzed. The action of main parameters on the reliability index changes with time is shown. The fire resistance considers the failure probability is given. The results show that increase the reinforcement ratio and concrete cover thickness appropriately are effective measures to improve the fire resistance limit of reinforced concrete beams.


Sign in / Sign up

Export Citation Format

Share Document