scholarly journals Stress Analysis and Design Validation of Chute using DEM Software

Author(s):  
Sadige Akhil Prasad

The discrete element method (DEM) is attracting growing attention for the simulation of industrial Bulk solid flow; much of the earlier DEM modelling has considered two-dimensional (2D) flows and used circular particles. The DEM maintains the individual record (velocities, forces, etc.) of particles in flow and stress on equipment. This will enable the designer to know the problems in the design. Transfer chute is used in many industries to facilitate bulk material from one conveyor belt to another or for guide flow from a delivery point (feeder, screw conveyor) into a process or equipment (centrifuge, screener, etc.). Although the transfer chute itself may appear to be a low-cost part of the equipment train, it can easily become costly in maintenance due to plugging, abrasive wear, segregation, etc. The objective of this study is to analyse the stress distribution in a transfer chute when it is in use and to validate design is free from plugging. The modelling was done using the CREO PARAMETRIC software as per Industry standards. The Chute was modelled and simulated using the ROCKY DEM software. In the present research work, a discrete element analysis procedure is used in the ROCKY DEM simulation to predict the level of stress and velocities of particles.

2011 ◽  
Vol 101-102 ◽  
pp. 755-758 ◽  
Author(s):  
Chun Sheng Yang

Belt conveyors are the major equipments for bulk material transportation.This paper analyses the static and dynamic behaviours of the belt, and establishes the dynamic elastic modulus. By analyzing the characteristics of the Kelvin and Maxwell viscoelastic model, the former is selected as the conveyor belt model as it can more realistically reflect the mechanical characteristics of the conveyor system. This paper introduces the development of the belt conveyor, and analyzes the current research situation at home and abroad.


2021 ◽  
Author(s):  
Mahesh Gund ◽  
R T Vyavahare

In recent years, composite material is used as an alternative material for materials like metal, wood, etc. due to low in weight, strength to weight ratio and stiffness properties. Natural fibers like coir fiber, palm fiber, jute fiber, banana plant fiber, etc have low cost, easy availability and less harmful to human body. Also, carbon fiber having various properties such as high strength to weight ratio, rigidity, good tensile strength, fatigue resistance, fire resistance/not flammable, high thermal conductivity. This research work aims to find out the mechanical properties of Carbon fiber, Coir fiber and Epoxy composite material with different ply orientations angles by using FEA software Ansys APDL R15.0.


2014 ◽  
Vol 644-650 ◽  
pp. 689-692
Author(s):  
Yan Hua Shi ◽  
Guo Quan Zhang ◽  
Ning Zhang ◽  
Zhi Ping Huang

During the rice mill structural design process, static analysis is an extremely important field, not only decide to what the structure size is, but also for the subsequent fatigue analysis, providing the basis for the overall stability analysis. In this paper, vertical screw conveyor vertical rice mill, rice discrete element analysis simulation under different speed, the internal movement of materials to simulate the process for improving the productivity of the vertical screw conveyor has a certain significance. Providing an important basis for further design optimization of the rice mill structure.


Author(s):  
Chuan Wen Chi ◽  
Ian Howard ◽  
Jian De Wang

This paper details an investigation of the relationship between the static individual torsional mesh stiffness and the static transmission error of gears in mesh. The investigations of the individual torsional mesh stiffness are one of the fundamental concepts in gear analysis and behaviour that have been used in recent years for predicting transmission error. The research work for this paper has two main parts. The first part involved measuring the static transmission error of gears through a series of experiments. An existing test rig was used for the experimental investigation where a nylon gear was placed in mesh with a fixed aluminium gear under various torques. Measurements of the rotation of the nylon gear at precise angular positions throughout the mesh cycle were used as a basis for determining the torsional mesh stiffness and the static transmission error. The second part involved the use of numerical analysis tools (FEA) to calculate the theoretical static transmission error and the individual torsional mesh stiffness in the same conditions as the experiments. The validity of the theory of individual torsional mesh stiffness was investigated, through a comparison between the experimental results and the FEA modelling results. The work included experiments, finite element analysis modelling, and statistical data analysis. The final results of this paper showed that individual torsional mesh stiffness theory can effectively predict transmission error in gear transmission systems, however some improvements need to be made to both the theory and the experiments.


Author(s):  
Samantha Felhofer ◽  
Kaleigh Kraft ◽  
Reilly Flynn ◽  
Amanda Mudlaff ◽  
Brett Samuelson ◽  
...  

Abstract A senior design team from the Milwaukee School of Engineering assisted the Milwaukee Harbor District with a trash collecting solution for the Kinnickinnic River. The design objectives were: the use of solar panels to generate charge for the continuous operation of the trash solution, an innovative and cost-efficient way to clear debris blockages from the conveyor, low cost, and a design that can operate as autonomously as possible to require the least amount of human intervention. The Kinnickinnic River experiences a reverse flow and a substantial rise in water level during and after storms. The need for a trash solution in the section of the river that passes underneath Becker St. in downtown Milwaukee is due to the extreme pollution that has collected over the years. The city of Milwaukee, through the Harbor District and other non-profit organizations, have made plans to beautify the areas that have suffered from the residual pollution and simultaneously launch a promotional campaign to raise environmental awareness. Through school programs and the reality of the team’s trash solution in the river, the Kinnickinnic River will once again flourish in both flora and fauna. The team has created a design that will fit the river’s needs taking into consideration the solar energy available and various flow simulations. A full design solution with design details and specifications for manufacturing will be submitted to the Harbor District of Milwaukee for their review. The current design makes use of a floating platform base, 24 solar panels, eight lead acid batteries, a DC motor to run a conveyor belt to pull trash out of the water and to run a rake system to aid in pushing trash onto the conveyor, a gearbox to produce the necessary torque, a boom and cable system to catch trash further in the river, and a dumpster located on a dock in front of the trash collector. Finite Element Analysis and Computational Fluid Dynamics simulations were run to test the designs developed for the conveyor mechanism and the raking system and to test the amount of force placed on the trash collector by the water and air velocities. Further simulations may be run to test more components of the trash collector as needed. A prototype of the conveyor and rake system was produced to simulate the functionality of the design. Additionally, the selected solar panels for the design were tested using a data collector and analyzed to ensure power to the design would be enough.


2021 ◽  
Vol 11 (11) ◽  
pp. 5119
Author(s):  
Byungkwan Park ◽  
Chulho Lee ◽  
Soon-Wook Choi ◽  
Tae-Ho Kang ◽  
Soo-Ho Chang

This study used a discrete-element analysis to predict the excavation performance of a 7.73 m-diameter earth pressure balance (EPB) shield tunnel boring machine (TBM). The simulation mainly predicted several excavation performance indicators for the machine, under different operating conditions. The number of particles in the chamber and the chamber pressure varied, as the operating conditions changed during the simulated TBM excavation. The results showed that the compressive force, torque, and driving power acting on the TBM cutterhead varied with its rotation speed, increasing as the cutterhead rotation speed rose. The overall compressive force acting on all of the disc cutters and their impact wear increased linearly as the cutterhead rotation accelerated. The position of a disc cutter on the cutterhead had a particularly strong influence, with higher compressive forces experienced by the cutters closer to the center. In contrast, the gauge disc cutters at the transition zone of the cutterhead showed more wear than those elsewhere. The muck discharge rate and the driving power of the screw conveyor rose with increasing screw conveyor and cutterhead rotation speeds. Finally, this study suggests optimal operation conditions, based on pressure balance and operational management of the TBM.


2004 ◽  
Vol 261-263 ◽  
pp. 597-602
Author(s):  
Hong Gun Kim

A seat frame structure in automotive vehicles made of polymer matrix composite(PMC) with reinforced by X-shape steel frame was developed to obtain weight reduction at low cost. The frame structure was designed and analysed using finite element analysis(FEA) and was compared with experimental impact test to verify the structural safety after fabricated. The design model based on safety was analysed with appropriate boundary conditions and loading conditions. Each result was utilized to modify the actual shape to obtain a lighter, safer and stabler design. It was found that the substitution of PMC material reinforced by an X-shaped steel frame resulted in a weight reduction effect with equivalent strength, impact characteristics and fracture property.


2021 ◽  
Vol 11 (7) ◽  
pp. 3067
Author(s):  
Dimitris Mourtzis ◽  
John Angelopoulos ◽  
Nikos Panopoulos

As the industrial requirements change rapidly due to the drastic evolution of technology, the necessity of quickly investigating potential system alternatives towards a more efficient manufacturing system design arises more intensely than ever. Production system simulation has proven to be a powerful tool for designing and evaluating a manufacturing system due to its low cost, quick analysis, low risk and meaningful insight that it may provide, improving the understanding of the influence of each component. In this research work, the design and evaluation of a real manufacturing system using Discrete Event Simulation (DES), based on real data obtained from the copper industry is presented. The current production system is modelled, and the real production data are analyzed and connected. The impact identification of the individual parameters on the response of the system is accomplished towards the selection of the proper configurations for near-optimum outcome. Further to that, different simulation scenarios based on the Design of Experiments (DOE) are studied towards the optimization of the production, under predefined product analogies.


2020 ◽  
Vol 14 ◽  
Author(s):  
Osama Bedair

Background: Modular steel buildings (MSB) are extensively used in petrochemical plants and refineries. Limited guidelines are available in the industry for analysis and design of (MSB) subject to accidental vapor cloud explosions (VCEs). Objectives: The paper presents simplified engineering model for modular steel buildings (MSB) subject to accidental vapor cloud explosions (VCEs) that are extensively used in petrochemical plants and refineries. Method: A Single degree of freedom (SDOF) dynamic model is utilized to simulate the dynamic response of primary building components. Analytical expressions are then provided to compute the dynamic load factors (DLF) for critical building elements. Recommended foundation systems are also proposed to install the modular building with minimum cost. Results: Numerical results are presented to illustrate the dynamic response of (MSB) subject to blast loading. It is shown that (DLF)=1.6 is attained at (td/t)=0.4 for front wall (W1) with (td/T)=1.25. For side walls (DLF)=1.41 and is attained at (td/t)=0.6. Conclusions: The paper presented simplified tools for analysis and design of (MSB) subject accidental vapor cloud blast explosions (VCEs). The analytical expressions can be utilized by practitioners to compute the (MSB) response and identify the design parameters. They are simple to use compared to Finite Element Analysis.


2021 ◽  
pp. 014459872110135
Author(s):  
Zhen Tian ◽  
Shuangxi Jing ◽  
Lijuan Zhao ◽  
Wei Liu ◽  
Shan Gao

The drum is the working mechanism of the coal shearer, and the coal loading performance of the drum is very important for the efficient and safe production of coal mine. In order to study the coal loading performance of the shearer drum, a discrete element model of coupling the drum and coal wall was established by combining the results of the coal property determination and the discrete element method. The movement of coal particles and the mass distribution in different areas were obtained, and the coal particle velocity and coal loading rate were analyzed under the conditions of different helix angles, rotation speeds, traction speeds and cutting depths. The results show that with the increase of helix angle, the coal loading first increases and then decreases; with the increase of cutting depth and traction speed, the coal loading rate decreases; the increase of rotation speed can improve the coal loading performance of drum to a certain extent. The research results show that the discrete element numerical simulation can accurately reflect the coal loading process of the shearer drum, which provides a more convenient, fast and low-cost method for the structural design of shearer drum and the improvement of coal loading performance.


Sign in / Sign up

Export Citation Format

Share Document