Kinnikinnic River Trash Collector Design

Author(s):  
Samantha Felhofer ◽  
Kaleigh Kraft ◽  
Reilly Flynn ◽  
Amanda Mudlaff ◽  
Brett Samuelson ◽  
...  

Abstract A senior design team from the Milwaukee School of Engineering assisted the Milwaukee Harbor District with a trash collecting solution for the Kinnickinnic River. The design objectives were: the use of solar panels to generate charge for the continuous operation of the trash solution, an innovative and cost-efficient way to clear debris blockages from the conveyor, low cost, and a design that can operate as autonomously as possible to require the least amount of human intervention. The Kinnickinnic River experiences a reverse flow and a substantial rise in water level during and after storms. The need for a trash solution in the section of the river that passes underneath Becker St. in downtown Milwaukee is due to the extreme pollution that has collected over the years. The city of Milwaukee, through the Harbor District and other non-profit organizations, have made plans to beautify the areas that have suffered from the residual pollution and simultaneously launch a promotional campaign to raise environmental awareness. Through school programs and the reality of the team’s trash solution in the river, the Kinnickinnic River will once again flourish in both flora and fauna. The team has created a design that will fit the river’s needs taking into consideration the solar energy available and various flow simulations. A full design solution with design details and specifications for manufacturing will be submitted to the Harbor District of Milwaukee for their review. The current design makes use of a floating platform base, 24 solar panels, eight lead acid batteries, a DC motor to run a conveyor belt to pull trash out of the water and to run a rake system to aid in pushing trash onto the conveyor, a gearbox to produce the necessary torque, a boom and cable system to catch trash further in the river, and a dumpster located on a dock in front of the trash collector. Finite Element Analysis and Computational Fluid Dynamics simulations were run to test the designs developed for the conveyor mechanism and the raking system and to test the amount of force placed on the trash collector by the water and air velocities. Further simulations may be run to test more components of the trash collector as needed. A prototype of the conveyor and rake system was produced to simulate the functionality of the design. Additionally, the selected solar panels for the design were tested using a data collector and analyzed to ensure power to the design would be enough.

Author(s):  
Sadige Akhil Prasad

The discrete element method (DEM) is attracting growing attention for the simulation of industrial Bulk solid flow; much of the earlier DEM modelling has considered two-dimensional (2D) flows and used circular particles. The DEM maintains the individual record (velocities, forces, etc.) of particles in flow and stress on equipment. This will enable the designer to know the problems in the design. Transfer chute is used in many industries to facilitate bulk material from one conveyor belt to another or for guide flow from a delivery point (feeder, screw conveyor) into a process or equipment (centrifuge, screener, etc.). Although the transfer chute itself may appear to be a low-cost part of the equipment train, it can easily become costly in maintenance due to plugging, abrasive wear, segregation, etc. The objective of this study is to analyse the stress distribution in a transfer chute when it is in use and to validate design is free from plugging. The modelling was done using the CREO PARAMETRIC software as per Industry standards. The Chute was modelled and simulated using the ROCKY DEM software. In the present research work, a discrete element analysis procedure is used in the ROCKY DEM simulation to predict the level of stress and velocities of particles.


2016 ◽  
Vol 861 ◽  
pp. 88-95
Author(s):  
Balázs Nagy ◽  
Elek Tóth

In this research, conjugated thermal and fluid dynamics simulations are presented on a modern hollow clay slab blocks filled pre-stressed reinforced concrete beam slab construction. The simulation parameters were set from Eurocode standards and calibrated using data from standardized fire tests of the same slab construction. We evaluated the temperature distributions of the slabs under transient conditions against standard fire load. Knowing the temperature distribution against time at certain points of the structure, the loss of load bearing capacity of the structure is definable at elevated temperatures. The results demonstrated that we could pre-establish the thermal behavior of complex composite structures exposed to fire using thermal and CFD simulation tools. Our results and method of fire resistance tests can contribute to fire safety planning of buildings.


Author(s):  
Nor Aiman Sukindar ◽  
Azib Azhari Awang Dahan ◽  
Sharifah Imihezri Syed Shaharuddin ◽  
Nor Farah Huda Abd Halim

Abstract Fused Deposition Modelling (FDM) is an additive manufacturing (AM) process that produces a physical object directly from a CAD design using layer-by-layer deposition of the filament material that is extruded via a nozzle. In industry, FDM has become one of the most used AM processes for the production of low batch quantity and functional prototypes, due to its safety, efficiency, reliability, low cost, and ability to process manufacturing-grade engineering thermoplastic. Recently, the market is flooded with the availability of low-cost printers produced by numerous companies. This research aims to investigate the effect of different porosity levels on a scaffold structure produced using a low-cost 3D printer. Comparisons of these porous structures were made in terms of Von-Mises strain, total deformation, as well as compressive stress. Various porosity levels were created by varying printing parameters, including layer height, infill density, and shell thickness by slicing the initial solid CAD file using Repetier Host 3D printing software. Finite Element Analysis (FEA) simulation was then performed on the created scaffold structures by using Ansys Workbench 19.2. The simulation result indicates that the greater porosity level will result in higher total deformation of the structure. Meanwhile, the compression test shows that the minimum strength value obtained was favourable at 22 MPa and had exceeded that of the trabecular femur (15 MPa). However, its porosity level (maximum at 52%) was still below that of the minimum threshold of porosity level of 70 percent. However, the printing parameters currently used can be adjusted in the future. Therefore, it was deduced that the low-cost 3D printer offers promising potential to fabricate different porosity structures with multiple outcomes.


2021 ◽  
Vol 7 (2) ◽  
pp. 58
Author(s):  
Celal Çakıroğlu ◽  
Gebrail Bekdaş

In the recent years natural fiber reinforced composites are increasingly receiving attention from the researchers and engineers due to their mechanical properties comparable to the conventional synthetic fibers and due to their ease of preparation, low cost and density, eco-friendliness and bio-degradability. Natural fibers such as kenaf or flux are being considered as a viable replacement for glass, aramid or carbon. Extensive experimental studies have been carried out to determine the mechanical behavior of different natural fiber types such as the elastic modulus, tensile strength, flexural strength and the Poisson’s ratio. This paper presents a review of the various experimental studies in the field of fiber reinforced composites while summarizing the research outcome about the elastic properties of the major types of natural fiber reinforced composites. Furthermore, the performance of a kenaf reinforced composite plate is demonstrated using finite element analysis and results are compared to a glass fiber reinforced laminated composite plate.


Electronics ◽  
2018 ◽  
Vol 7 (12) ◽  
pp. 342 ◽  
Author(s):  
Patricia Arroyo ◽  
Jesús Lozano ◽  
José Suárez

This study addresses the development of a wireless gas sensor network with low cost, small size, and low consumption nodes for environmental applications and air quality detection. Throughout the article, the evolution of the design and development of the system is presented, describing four designed prototypes. The final proposed prototype node has the capacity to connect up to four metal oxide (MOX) gas sensors, and has high autonomy thanks to the use of solar panels, as well as having an indirect sampling system and a small size. ZigBee protocol is used to transmit data wirelessly to a self-developed data cloud. The discrimination capacity of the device was checked with the volatile organic compounds benzene, toluene, ethylbenzene, and xylene (BTEX). An improvement of the system was achieved to obtain optimal success rates in the classification stage with the final prototype. Data processing was carried out using techniques of pattern recognition and artificial intelligence, such as radial basis networks and principal component analysis (PCA).


Author(s):  
ELIEL EDUARDO MONTIJO-VALENZUELA ◽  
SAUL DANIEL DURAN-JIMENEZ ◽  
LUIS ALBERTO ALTAMIRANO-RÍOS ◽  
JOSÉ ISAEL PÉREZ-GÓMEZ ◽  
OSCAR SALMÓN-AROCHI

The objective of this research is to manufacture a prototype of a teaching die for the specialty of precision mechanical design in mechatronic engineering, in order to achieve the skills required in unit two, regarding dies. The methodology used consists of five stages: 1. Definition of the preliminary conditions. 2. Theoretical calculations for die design. 3. Design, modeling and assembly using computer-aided software (CAD) of the parts that make up the die. 4. Validation with simulation of finite element analysis (AEF). 5. Manufacture of parts and physical assembly of the die. A functional prototype was obtained with which the teacher and student can perform calculations, designs and CAD models, AEF analysis of the static and fatigue type, manufacture of rapid prototypes using 3D printing, the identification of the parts that make up a die and their functioning. The advantage of this prototype, compared to metal die-cutting machines, is its low cost of production and manufacturing, it does not require expensive and specialized machinery for manufacturing, specific designs can be made by the students and its subsequent manufacture within the laboratories of the Technological Institute of Hermosillo.


2019 ◽  
Vol 7 (11) ◽  
pp. 1322-1329
Author(s):  
Cleber Amorim ◽  
Lúcia Adriana Villas-Bôas ◽  
Flávio José de Oliveira Morais ◽  
Paulo Sérgio Barbosa Dos Santos ◽  
Douglas Cardozo De Almeida ◽  
...  

With the technological development of a new class of wastes, the technological ones were created. Many times, this waste is not processed correctly, having its hazardous disposal. Thus, recycling these materials is an alternative to end specific equipment. This work used this approach to develop a low-cost, affordable second-row conveyor belt. The conveyor belt was designed to bag, weigh, and monitor different volumes in a grain silo. Such equipment is of interest to smallholder applications as well as the integration between different areas of the Biosystems engineering course.


2018 ◽  
Vol 4 (11) ◽  
pp. 2667
Author(s):  
Hayder Fadhil ◽  
Amer Ibrahim ◽  
Mohammed Mahmood

Corrugated steel plate shear wall (CSPSW) is one of the lateral resistance systems which consists mainly of steel frame (beam and column) with vertical or horizontal corrugated steel plate connected to the frame by weld, bolts or both. This type of steel shear wall characterized by low cost and short construction time with high strength, ductility, initial stiffness and excellent ability to dissipate energy. The aim of this paper is to evaluate the effect of corrugation angle and its direction on the performance of CSPSW under cyclic loading. The Finite element analysis was employed to achieve the research aim. The FE models were validated with experimental data available in the literature. Results reveal that the corrugation angle has a clear influence on initial stiffness, strength, ductility, and energy dissipation of CSPSW. The optimum performance of CSPSW can be obtained with angles of 30o for CSPSW with vertical corrugation and 20o for CSPSW with horizontal corrugation. The use of CSPSW with vertical corrugation provides higher strength, stiffness, and ductility compared to CSPSW with horizontal corrugation. Therefore, it is recommended to use CSPSW with vertical corrugation.


Author(s):  
Jifeng Wang ◽  
Qubo Li ◽  
Norbert Mu¨ller

A mechanical and optimal analyses procedure is developed to assess the stresses and deformations of Novel Wound Composite Axial-Impeller under loading conditions particular to centrifuge. This procedure is based on an analytical method and Finite Element Analysis (FEA, commercial software ANSYS) results. A low-cost, light-weight, high-performance, composite turbomachinery impeller from differently designed patterns will be evaluated. Such impellers can economically enable refrigeration plants using water as a refrigerant (R718). To create different complex patterns of impellers, MATLAB is used for creating the geometry of impellers, and CAD software UG is used to build three-dimensional impeller models. Available loading conditions are: radial body force due to high speed rotation about the cylindrical axis and fluid forces on each blade. Two-dimensional plane stress and three-dimensional stress finite element analysis are carried out using ANSYS to validate these analytical mechanical equations. The von Mises stress is investigated, and maximum stress and Tsai-Wu failure criteria are applied for composite material failure, and they generally show good agreement.


Energies ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 2172 ◽  
Author(s):  
Wenjuan Hao ◽  
Yu Wang

Linear flux switching permanent magnetic (LFSPM) machines, with the armature windings and magnets both on the mover in addition to a robust stator, are a good choice for long stoke applications, however, a large cogging force is also inevitable due to the double salient structure, and will worsen the system performance. Skewing methods are always employed for the rotary machines to reduce the cogging torque, and the rotor step-skewed method is a low-cost approximation of regular skewing. The step skewed method can also be applied to the linear machines, namely, the stator step skewed. In this paper, three stator step skewed structures, which are a three-step skewed stator, a two-step skewed stator and an improved two-step skewed stator, are employed for the cogging force reduction of two types of LFSPM machines. The three structures are analyzed and compared with emphasize on the influence of the skewed displacement on the cogging force and the average thrust force. Based on finite element analysis (FEA), proper skewed displacements are selected according to maximum difference between the reduction ratio of the cogging force and the decrease ratio of the average thrust force, then, the corresponding results are compared, and finally, valuable conclusions are drawn according to the comparison. The comparison presented in this paper will be useful to the cogging force reduction of LFSPM machines in general.


Sign in / Sign up

Export Citation Format

Share Document