scholarly journals The Utilization of Areca Skin Fiber - Pumice and Epoxy Resin Towards The Characterization of Concrete Polymer

2019 ◽  
Vol 1 (1) ◽  
pp. 45-53
Author(s):  
Lukman Hakim

The manufacturing and characterization of polymer concrete made from the mixture of areca fiber, pumice and sand as an aggregate and epoxy resin as a binder material has been conducted. The mixture of sand, pumice and areca shell fiber varies with (50:50:0) g, (49:49:2) g, (48:48:4) g, (47:47:6) g, (46:46:8) g, (45:45:10) g respectively, and epoxy resin (25.30) g in every variation of aggregate (sand + pumice + areca fiber). The results reveal that the best mixture composition in accordance to the experiment was a mixture of sand and areca shell with a ratio of 48:48:2 g as well as the addition of 30 g epoxy resin. The physical properties of polymer concrete were analyzed. The density was 1.81 (g.cmˉ³) and porosity was 1%. Moreover, the mechanical properties were also analyzed by performing the impact test with the result of 7.5 KJ/m² and bending strength test was 16.94 MPa. The XRD analysis indicated the presence of quartz, pumice stone, quartz, pumice stone hexagonal, while the areca fiber has an amorphous crystal shape.

2019 ◽  
Vol 1 (1) ◽  
pp. 6-14
Author(s):  
Awan Maghfirah

Research has been carried out regarding the manufacturing process of polymer concrete made from a mixture of pumice, sand (1: 1), corn husk fiber, epoxy and thinner resin. This research was conducted to determine the characterization of polymer concrete which will be tested physically and mechanically with the best composition mixture. The physical properties of polymer concrete which were analyzed namely density, porosity and water absorption; mechanical properties including impact strength, flexural strength and compressive strength, and polymer concrete microstructure analysis, namely SEM-EDX. The best results were obtained with a mixture of pumice, sand (1:1), corn husk fiber, epoxy and thinner resin. The result are as stated here, density: 1.84 g/cm3 with composition (49:49:2) 30 g epoxy resin, porosity : 0.44% with composition (50:50:0) 20 g epoxy resin, water absorption: 1.8% with composition (50:50:0) 25 g of epoxy resin. Whereas mechanical properties, on impact tests: 4.956 KJ/m2 with composition of (47:47:6) 25 g epoxy resin, flexural test: 22.22 MPa with composition of (45:45:0) 30 g epoxy resin, pressure test: 8.41 MPa with composition of (49:49:2) 30 g epoxy resin. XRD analysis shows that each of its constituents still have quartz, pumice, quartz, pumice-shaped hexagonal crystals, while corn husk fibers are amorphous crystals. The average sound absorption coefficient for the three samples (20%, 25%, and 30%) are 0.178; 0.152; and 0.234 at a frequency of 500 Hz - 6300 Hz, which meets the requirements of ISO 11654 and ASTM C.384.


2013 ◽  
Vol 401-403 ◽  
pp. 713-716
Author(s):  
Cheng Fang ◽  
Dong Bo Guan ◽  
Wei Guo Yao ◽  
Shou Jun Wang ◽  
Hui An

The epoxy resin was modified with the mixture of α,ω-dihydroxy poly-(3,3,3-trifluoropropyl) siloxane (PTFPMS), KH560 and stannous octoate. KH560 can react with PTFPMS and also epoxy resin curing agent. The two reactions were characterized by FI-IR. The modified epoxy resin was characterized by FI-IR. The result showed that fluorine-containing silicone had been successfully introduced into the epoxy system. The mechanical and thermal properties of the modified epoxy resin were analyzed. The results showed that with the increase of PTFPMS the impact strength of epoxy resin increased, hardness and bending strength correspondingly reduced, slight decrease in the glass transition temperature.


2020 ◽  
Vol 15 (1) ◽  
pp. 113-128
Author(s):  
Chouaib Aribi ◽  
Aissa Bouaissi ◽  
Brahim Safi ◽  
Mohammed Saidi

Abstract This paper presents an experimental investigation on the post-repair flexural response of mortars with and without damage. In order to improve the mechanical properties of the damaged mortars, which were subjected to different loads ranging between 40 % and 90 %, the mortars specimens were reinforced and repaired using two different composite materials, the first with only epoxy resin, while the second consisted of a mixture of epoxy resin and glass fiber. The results show a significant improvement in the stiffness damaged. Therefore, the reinforced specimens by a layer of resin on the lower side surface increased the bending strength by 58 %, when compared to those control samples. The reinforcement using composite resin-fiber of glass exhibited considerable increases in the safety of constructions. The SEM images of damaged samples with and without repair, revealed the impact of reinforced glass fibers-mortar on the matrix-mortar by improving theirs mechanical performances.


2021 ◽  
Author(s):  
Chenglin Zhang ◽  
Guohua Gu ◽  
Shuhua Dong ◽  
Zhitao Lin ◽  
Chuncheng Wei ◽  
...  

Abstract In this study, the nonisothermal differential scanning calorimetry (DSC) was carried out to evaluate the curing reaction of fiber/epoxy laminates. The optimal curing process of the prepreg was obtained by T-β extrapolation method and nth-order reaction curing kinetic equation. The bending strength, impact strength and thermodynamic properties of the composite laminates with different ply orientations were investigated, respectively. The results show that the apparent activation energy and the reaction order of the prepregs are 82.89 kJ/mol and 0.92, respectively. The curing process of carbon fiber/epoxy resin prepreg is 130 ℃ /60min + 160 ℃/30 min. The bending strength of [0]10 laminate is 1948.3 MPa, which is 11.8 times higher than that of [+ 45/-45]5s laminate, and 96.4% higher than that of [0/90]5s laminate. The impact strength of [0]10 laminate is higher than that of [+ 45/-45]5s and [0/90]5s laminates. The glass transition temperature (Tg) of the laminates is 142 ~ 146 ℃, and the loss factor of [0]10 laminate is significantly higher than that of [+ 45/-45]5s and [0/90]5s laminates. This research provides a theoretical basis for the further application of prepregs to fiber composite materials.


2019 ◽  
Vol 22 ◽  
pp. 39-47 ◽  
Author(s):  
Fadhéla Otmane ◽  
Salim Triaa ◽  
A. Maali ◽  
B. Rekioua

This study reports on the elaboration and characterization of bulk nanocomposites samples obtained by dispersion of metallic powders at the nanoscale as reinforcements in a polymer matrix. Elemental Fe powders were successfully nanostructured via high-energy ball milling. Structural characterization of the produced powders was conducted using X-Ray Diffraction (XRD) analysis and Scanning Electron Microscopy (SEM). The Halder-Wagner approach was adopted to determine the powder’s average grain size, internal strain, lattice parameters and the mixing factors. Structural parameters evolution and morphological changes according to milling progression are discussed. Bulk nanocomposites samples were shaped in a home moulder by dispersion of coarse Fe and nanostructured Fe powders in a continuous matrix of commercial epoxy resin. The obtained bulk samples match the metallic X-band wave-guide WR-90 dimensions used for electromagnetic characterization. The two-port Sij scattering parameters were measured via an Agilent 8791 ES network analyzer. The measured scattering parameters served to calculate the loss factor of samples and to extract the dielectric permittivity via the Nicholson-Ross-Weir conversion. Spectra evolution of the scattering parameters, the loss factor and the dielectric constant for epoxy resin with coarse Fe and nanostructured Fe reinforcements are commented.


2019 ◽  
Vol 9 (23) ◽  
pp. 5148 ◽  
Author(s):  
Alessandro Grazzini

Diagnostics is a very important tool of knowledge in the field of historical buildings. In particular, non-destructive techniques allow to deepen the study of the mechanical characteristics of the historical walls without compromising the artistic value of the monumental building. A case study of the use of sonic and impact tests was described, performed using the same instrumented hammer, for the characterization of the masonry walls at the Sanctuary of Santa Maria delle Grazie at Varoni, one of the churches damaged in the 2016 Amatrice earthquake. Sonic tests showed the presence of a discontinous masonry texture, as well as confirming the ineffectiveness of the strengthening work made by injections of lime mortar. The impact test allowed us to obtain the elastic modulus of the omogeneous stones of the masonry. The results obtained from the non-destructive techniques were confirmed by the flat jacks test carried out on the building, confirming the great potential of the non-destructive diagnostics suitable for analyzing important structural parameters without affecting the preservation of historical masonry structures.


2010 ◽  
Vol 150-151 ◽  
pp. 727-731 ◽  
Author(s):  
Zhi Yi Huang ◽  
Shao Rong Lu ◽  
Zhi You Yang ◽  
Chun He Yu ◽  
Dong Guo

Liquid crystal polyurethane (LCPBI) containing biphenylnate and imide units was synthesized and characterized and used to modify the conventional epoxy resin (E-51). Experimental results revealed that the impact strength of the epoxy resin modified with LCPBI was 2.5 times higher than that of unmodified epoxy resin, and the tensile strength as well as the bending strength was also improved. The thermal decomposition temperature of modified systems was also 15-20oC higher than that of the unmodified system, and the fracture structures of the blends was investigated by SEM.


2012 ◽  
Vol 482-484 ◽  
pp. 1959-1962 ◽  
Author(s):  
Quan Fu Yin ◽  
Ming Wei Di

Lignin/epoxy resin composites were prepared by blending lignin with epoxy resin cured by polyamide. The effect of the content of lignin and polyamide on the mechanical properties of the lignin/epoxy resin composites was studied systemically. And the structure for the blend of lignin and epoxy resin without the curing agent was characterized by Fourier transform infrared spectroscopy (FTIR). The results of mechanical properties test showed that the bending strength of the composites decreases gradually with increasing the content of lignin, while the impact strength increased firstly and then decreased. The bending strength of lignin/epoxy resin composites showed a trend of increasing firstly and then decreasing with the increase of the content of polyamide, while the impact strength exhibited an opposite trend. The density for the composites increased with the addition of lignin, and polyamide exhibited an inconspicuous effect on density of the composites. The FTIR analysis results showed that the epoxy resin could be cured by lignin without polyamide, which concluded that the lignin could catalyze the cross-linking of epoxy resin or react with epoxy resin, and this bonding effect would beneficial to the properties of lignin/epoxy resin composites.


Animals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2896
Author(s):  
María Alejandra Blanco ◽  
Raúl Hourquebie ◽  
Kaleb Dempsey ◽  
Peter Schmitt ◽  
Michael (Mick) Peterson

Quantitative measurements of performance parameters have the potential to increase consistency and enhance performance of the surfaces as well as to contribute to the safety of horses and riders. This study investigates how factors known to influence the performance of the surface, incorporation of a drainage package, control of the moisture control, and introduction of a geotextile reinforcement, affect quantitative measurements of arena materials. The measurements are made by using affordable lightweight testing tools which are readily available or easily constructed. Sixteen boxes with arena materials at a consistent depth were tested with the Going Stick (GS), both penetration resistance and shear, the impact test device (ITD), and the rotational peak shear device (RPS). Volumetric moisture content (VMC %) was also tested with time–domain reflectometry (TDR). Results obtained using GS, RPS, ITD, and TDR indicate that the presence of the drainage package, moisture content, and geotextile addition were detected. Alterations due to combinations of treatments could also be detected by GS, ITD, and TDR. While the testing showed some limitations of these devices, the potential exists to utilize them for quality control of new installations as well as for the monitoring of maintenance of the surfaces.


2021 ◽  
Vol 21 (3) ◽  
pp. 165-171
Author(s):  
Kris Witono ◽  
◽  
Pondi Udianto ◽  
Heru Prasetyo ◽  
Sugeng Hadi Susilo ◽  
...  

The manufacture of wind turbine blades has a very high risk of failure, especially in the manufacturing section or in this case the material structure. If the structure of the propeller material is not able to withstand the very high pressure and air flow, it will result in the failure of the material structure when it is in use. For this reason, the purpose of this study was to determine the composition of composite materials that have high strength and toughness properties and are suitable for wind turbine propellers. The method used in this research is experimental. The independent variables include the number of layers and the volume fraction of straw fiber. The dependent variables are shock load and compressive strength. Each compression test specimen is made with a gauge length of 100mm, a width of 25mm, and a thickness of 2.5mm. While the impact test specimens are made equal to l25mm long, l2mm wide, l2mm high, and 2mm notch. The results showed that the bending strength of the straw fiber composite with 6 layers had an increasing trend as the number of layers increased. The highest bending strength with the number of piles of 6 layers and the lowest strength with the number of piles of 2 layers. In addition, the volume fraction is very influential on the bending stress of the straw composite matrix. It can be seen that the matrix with a volume fraction of 50% has the greatest bending stress in each number of layers, both 2, 4 and 6. For the impact test, it is found that the optimal number of layers occurs in the number of 2 layers with a volume fraction of 33%. The shock load tends to decrease. Meanwhile, based on the volume fraction, the larger the volume fraction, the smaller the shock load that can be received by the straw fiber composite material.


Sign in / Sign up

Export Citation Format

Share Document