scholarly journals Preparation and Characterization of Conductive Plastics Using Cassava Peel Waste and Addition of CuSO4

2020 ◽  
Vol 2 (1) ◽  
pp. 34-41
Author(s):  
Syahrul Humaidi

This study investigated the characteristics of a conductive plastic based on root starch and CuSO4 filler. The mixture variation was (95:5)%; (90:10)%; (85:15)%; (80:20)% and (75:25)%. Glycerol is used to change the material as desired (plasticizer) which is called a plasticizer. The method used in the manufacture of this material is melt intercalation. Mechanical testing includes tensile strength (tensile strength) and elongation at break. Thermal testing was done using DTA (Differential Thermal Analysis) and material conductivity testing. The characterization results showed that the optimum starch composition: CuSO4 (75:25)% had a conductivity value of 7.3 x 10-2S.m-1, a thermal test value of 410ºC. The optimum tensile strength value occurs in the composition (80:20)% with a value of 4.606 MPa

2019 ◽  
Vol 35 (1) ◽  
pp. 221-227
Author(s):  
Maulida Lubis ◽  
Mara Bangun Harahap ◽  
Iriany Iriany ◽  
Muhammad Hendra S. Ginting ◽  
Iqbal Navissyah Lazuardi ◽  
...  

Cooking oil waste that has been disposed could contamine the environment. However, if it is processed well, it can potentially become a raw material of polyurethane. The aim of this study was to determine the best polyurethane on the tensile strength, impact strength, elongation at break, water absorption, characterization of Fourier Transform Infra-Red (FTIR) and the characterization of Scanning Electron Microscopy (SEM). The variables used in this study were ambient process temperature with 440 rpm stirring speed, 1-minute stirring time, the ratio of polyoland WCO was 7:3 (% w/w), and the ratio of Toluene Diisocyanate (TDI) and WCO was 1:1; 1:2; 1:3; 1:4 (% w/w). The results obtained from the analysis of the best tensile strength against the polyurethane synthetic was in the 1:1 ratio of mixed variations between oil and TDI with a value of 0.403 MPa. The best impact strength was in the ratio of mixed variations between oil and TDI with 1:4 (% w/w) with a value of 600.975 J/m2. The best elongation at break against polyurethane foam synthetic was in the 1:3 ratio of mixture variations of oil and TDI with a value of 4.506%.


2020 ◽  
Vol 21 (8) ◽  
pp. 741-747
Author(s):  
Liguang Zhang ◽  
Yanan Shen ◽  
Wenjing Lu ◽  
Lengqiu Guo ◽  
Min Xiang ◽  
...  

Background: Although the stability of proteins is of significance to maintain protein function for therapeutical applications, this remains a challenge. Herein, a general method of preserving protein stability and function was developed using gelatin films. Method: Enzymes immobilized onto films composed of gelatin and Ethylene Glycol (EG) were developed to study their ability to stabilize proteins. As a model functional protein, β-glucosidase was selected. The tensile properties, microstructure, and crystallization behavior of the gelatin films were assessed. Result: Our results indicated that film configurations can preserve the activity of β-glucosidase under rigorous conditions (75% relative humidity and 37°C for 47 days). In both control films and films containing 1.8 % β-glucosidase, tensile strength increased with increased EG content, whilst the elongation at break increased initially, then decreased over time. The presence of β-glucosidase had a negligible influence on tensile strength and elongation at break. Scanning electron-microscopy (SEM) revealed that with increasing EG content or decreasing enzyme concentrations, a denser microstructure was observed. Conclusion: In conclusion, the dry film is a promising candidate to maintain protein stabilization and handling. The configuration is convenient and cheap, and thus applicable to protein storage and transportation processes in the future.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Yongfang Qian ◽  
Zhen Zhang ◽  
Laijiu Zheng ◽  
Ruoyuan Song ◽  
Yuping Zhao

Design and fabrication of nanofibrous scaffolds should mimic the native extracellular matrix. This study is aimed at investigating electrospinning of polycaprolactone (PCL) blended with chitosan-gelatin complex. The morphologies were observed from scanning electron microscope. As-spun blended mats had thinner fibers than pure PCL. X-ray diffraction was used to analyze the degree of crystallinity. The intensity at two peaks at 2θof 21° and 23.5° gradually decreased with the percentage of chitosan-gelatin complex increasing. Moreover, incorporation of the complex could obviously improve the hydrophilicity of as-spun blended mats. Mechanical properties of as-spun nanofibrous mats were also tested. The elongation at break of fibrous mats increased with the PCL content increasing and the ultimate tensile strength varied with different weight ratios. The as-spun mats had higher tensile strength when the weight ratio of PCL to CS-Gel was 75/25 compared to pure PCL. Both as-spun PCL scaffolds and PCL/CS-Gel scaffolds supported the proliferation of porcine iliac endothelial cells, and PCL/CS-Gel had better cell viability than pure PCL. Therefore, electrospun PCL/Chitosan-gelatin nanofibrous mats with weight ratio of 75/25 have better hydrophilicity mechanical properties, and cell proliferation and thus would be a promising candidate for tissue engineering scaffolds.


2021 ◽  
Vol 23 (1) ◽  
pp. 16
Author(s):  
Vienna Saraswaty ◽  
Rossy Choerun Nissa ◽  
Bonita Firdiana ◽  
Akbar Hanif Dawam Abdullah

THE PHYSICOCHEMICAL CHARACTERISTICS OF RECYCLED-PLASTIC PELLETS OBTAINED FROM DISPOSABLE FACE MASK WASTES. The government policy to wear a face mask during the COVID-19 pandemic has increased disposable face mask wastes. Thus, to reduce such wastes, it is necessary to evaluate the physicochemical characteristics of disposable face masks wastes before the recycling process and the recycled products. In this study, physicochemical characterization of the 3-ply disposable face masks and the recycled plastic pellets after disinfection using 0.5% v/v sodium hypochlorite were evaluated. A set of parameters including the characterization of surface morphology by a scanning electron microscope (SEM), functional groups properties by a fourier transform infra-red spectroscopy (FT-IR), thermal behavior by a differential scanning calorimetry (DSC), tensile strength and elongation at break were evaluated. The surface morphological of each layer 3-ply disposable face mask showed that the layers were composed of non-woven fibers. The FT-IR evaluation revealed that 3-ply disposable face mask was made from a polypropylene. At the same time, the DSC analysis found that the polypropylene was in the form of homopolymer. The SEM analysis showed that the recycled plastic pellets showed a rough and uneven surface. The FT-IR, tensile strength and elongation at break of the recycled plastic pellets showed similarity with a virgin PP type CP442XP and a recycled PP from secondary recycling PP (COPLAST COMPANY). In summary, recycling 3-ply disposable face mask wastes to become plastic pellets is recommended for handling disposable face mask wastes problem.


2017 ◽  
Vol 26 (5) ◽  
pp. 096369351702600 ◽  
Author(s):  
Wenjing Xia ◽  
Nianqing Zhu ◽  
Zhongbin Ni ◽  
Mingqing Chen

Biodegradable composites from poly (butylene succinate-co-butylene adipate) (PBSA) and Taihu Lake (Wuxi, China) blue algae were prepared by melt blending. The property and structure of biocomposites were investigated. By adding extra amount of water to blue algae, the formulated blue algae acted as a plastic in the composites during blending, and exhibited a reinforcing effect on the PBSA matrix. With increasing blue algae content, the thermal stability of the composites decreased; the tensile strength at break and elongation at break of the composites reduced, but the Young's modulus of the composites increased. However, the composite with 30% blue algae loading still exhibited good mechanical performance (tensile strength at break of 21.3 MPa, elongation at break of 180%). The fabrication of value-added PBSA/algae composites appeared as an effective approach to reduce the secondary environmental pollution of Taihu blue algae.


2011 ◽  
Vol 284-286 ◽  
pp. 459-463 ◽  
Author(s):  
Yuan Yuan Qi ◽  
Bin Liu ◽  
Xing Bin Yan

Nanofibrous scaffolds of PVA and HA were prepared by electrospinning. SEM showed the scaffolds had porous nanofibrous morphology, and the diameter of the fibers was in the range of 200-1000 nm. FTIR and XRD showed the presence of HA in the scaffolds. The mechanical properties of the scaffolds changed by the adding content of HA. For the nanoscaffolds with 2wt % HA, the ultimate tensile strength and the elongation at break was 7.5 MPa and 17%. The PVA/HA nanoscaffolds prepared by electrospinning indicated good properties, and had a potential applications in bone tissue engineering and drug delivery systems.


2010 ◽  
Vol 123-125 ◽  
pp. 347-350 ◽  
Author(s):  
Mubarak A. Khan ◽  
Nazia Rahman ◽  
M. Rahman

Gelatin-PVA blend films of different compositions (0%, 5%, 10%, 15% of PVA) were prepared by casting. The tensile strength (TS) and elongation at break (Eb) of the films were studied. The TS and Eb of pure gelatin films were found to be 32 MPa and 3.3% respectively. The films were irradiated under different gamma radiation dose (50 Krad, 100 Krad, 150 Krad, 250 Krad, 500 Krad). 5% PVA containing gelatin films irradiated under 100 Krad gamma radiation showed highest TS of 42 MPa and highest Eb of 4.2%. Thermal property of the films was studied by Thermomechanical analysis (TMA) and Thermogravimetric Analysis (TGA). The grafting of PVA onto gelatin is studied by IR. In order to study surface morphology SEM study was undertaken.


2011 ◽  
Vol 236-238 ◽  
pp. 2028-2031
Author(s):  
Bing Tao Wang ◽  
Yan Zhang ◽  
Zheng Ping Fang

Biodegradable aliphatic-aromatic copolyesters/POSS nanocomposites were synthesized via in situ melt copolycondensation of terephthalic acid (TPA), poly(L-lactic acid) oligomer (OLLA), 1,4-butanediol (BDO) and polyhedral oligomeric silsesquioxanes (POSS) reagents (POSS-NH2 and POSS-PEG). The morphologies and dispersions of two POSS reagents in the nanocomposites and their effects on the mechanical and thermal properties were investigated. TEM and XRD characterizations confirmed that POSS-NH2 formed crystalline microaggregates and took poor dispersions in the nanocomposite, while POSS-PEG had better dispersion in the matrix. Due to the good dispersion and interfacial adhesion of POSS-PEG with the copolyester PBTL matrix, the tensile strength and the Young’s modulus greatly increased for PBTL/POSS-PEG nanocomposite. Moreover, compared with POSS-NH2 the existence of POSS-PEG imparted PBTL good flexibility and increased the mobility of the chains, so the glass-transition temperature and the heat of melting as well as the elongation at break were obviously influenced for PBTL/POSS-PEG nanocomposite.


2015 ◽  
Vol 1123 ◽  
pp. 387-390 ◽  
Author(s):  
Hamidah Harahap ◽  
Adrian Hartanto ◽  
Kelvin Hadinatan ◽  
Indra Surya ◽  
Baharin Azahari

The effect of aging on mechanical properties of natural rubber latex (NRL) products filled with alkanolamide-modified cassava peel waste powder (CPWP) was studied. CPWP used as fillers was prepared by milling and sieving it until the size of 100 mesh. The powder then was dispersed in a suspension containing water and alkanolamide in order to modify the prepared powders. The dispersion system of 10 pphr (part per hundred rubber) then was added into NRL matrix followed by pre-vulcanization at 70°C for 10 minutes. The NRL compound then were casted into films by coagulant dipping method then dried at 120°C for 10 minutes. Afterwards, the films were allowed to cool at room temperature for 24 hours before being aged in a circulation of hot air for 24 hours at 70°C. The properties such as tensile strength, tensile modulus, and elongation at break were evaluated between the aged samples and the unaged samples. From this study, it showed that the aged films have increasing value of tensile strength and tensile modulus while the value of elongation at break decreases. These datas are supported by Scanning Electron Microscope (SEM) micrographs which indicate that the change of morphology in NRL films occurs before and after aging.


2018 ◽  
Vol 152 ◽  
pp. 02007 ◽  
Author(s):  
Man Chee Lee ◽  
Seong Chun Koay ◽  
Ming Yeng Chan ◽  
Ming Meng Pang ◽  
Pui May Chou ◽  
...  

Polylactic acid (PLA) is biodegradable thermoplastic that made from renewable raw material, but its high cost limited the application. Thus, addition of natural fiber can be effectively reduced the cost of PLA. This research is utilised natural fiber extracted from durian husk to made PLA biocomposites. This paper is focus on the effect of fiber content on tensile and thermal properties of PLA/durian husk fiber (DHF) biocomposites. The results found that the tensile strength and modulus of this biocomposites increased with increase of fiber content, but the strength still lower compared to neat PLA. Then, the elongation at break of biocomposites was expected decreased at higher fiber content. The PLA/DHF biocomposites with 60 phr fiber content exhibited tensile strength of 11 MPa, but it is too brittle yet for any application. The addition of DHF caused an early thermal degradation on PLA biocomposites. Then, the thermal stability of PLA biocomposites was decreased with more fiber content.


Sign in / Sign up

Export Citation Format

Share Document