scholarly journals Controlling Ethylene Responses in Horticultural Crops at the Receptor Level

Author(s):  
Edward C. Sisler ◽  
Raphael Goren ◽  
Akiva Apelbaum

Ethylene is a plant hormone that controls many plant responses, such as growth, senescence, ripening, abscission and seed germination. Recently, 1-methy- cyclopropene (1-MCP), was shown to bind to ethylene receptor for a certain period of time and prevent ethylene action. The objectives of this research were to synthesize analogues of 1-MCP and test their potency to block the ethylene receptor and inhibit ethylene action. During the course of this project, procedures for synthesis and shipment of the cyclopropene compounds were developed as well assay procedures for each compound were worked out. Thirteen new compounds were synthesized. All of them are structural analogues of 1-MCP, with substitution in the 1-position and a side chain containing 2 to 10 carbons. After preliminary studies, nine promising compounds were selected for in-depth study. The potency of the compounds to inhibit ethylene action was tested on a wide scope of systems like: climacteric fruits (banana, avocado and tomato), the triple response (etiolated peas), and leaf abscission (citrus). As the putative inhibitors are suspected to compete for the site of binding and a competitive type of inhibition could be considered, a high concentration of ethylene (300 m1.L-1) was used to induce ripening and other physiological processes. The tests were conducted under extreme conditions which hasten ripening like treatment and storage at 22 to 25oC. There were fluctuations in the responses as related to the concentrations of the inhibitors. Some required much higher concentration to exert the same effect, while some, when applied at the same concentration, blocked the receptor for a longer period of time than the others. Some fruits and other plant organs responded differently to the same inhibitor, indicating differences in characteristics and availability of the ethylene receptors in the various tissues. The potency of the putative inhibitors was found to be greatly affected by their molecular structural and size. In addition, it was found that treatment with the inhibitor should be given before the onset of ethylene action In the case of fruit, treatment should be carried out before the pre-climacteric stage. Simultaneous treatment with ethylene and the inhibitors reduced the inhibitors' effect. The relationship between ethylene and the inhibitors is of a non-competitive nature. All the fruits treated with the putative inhibitors resumed normal ripening after recovery from the inhibition. This fact is of great importance when considering the inhibitors for practical use. The advantage of using inhibitors of ethylene action over inhibitors of ethylene production lies in the ability of the inhibitors of ethylene action to protect the tissue against both endogenous and exogenous ethylene, thus providing better overall protection. Our findings indicate that 1-MCP and its structural analogues are potent inhibitors of ethylene action capable of providing good protection against endogenous and exogenous ethylene. The fact that the compounds are in a gas phase and are non-phytotoxic, odorless and effective at minute concentrations, renders them promising candidates for commercial use. However, the development of water-soluble inhibitors will expand the potential use of the inhibitors in agriculture.

2011 ◽  
Vol 65 (2) ◽  
pp. 327-334 ◽  
Author(s):  
Raphael Goren ◽  
Moshe Huberman ◽  
Joseph Riov ◽  
Eliezer E. Goldschmidt ◽  
Edward C. Sisler ◽  
...  

2018 ◽  
Vol 18 (23) ◽  
pp. 17177-17190 ◽  
Author(s):  
Peng Sun ◽  
Wei Nie ◽  
Xuguang Chi ◽  
Yuning Xie ◽  
Xin Huang ◽  
...  

Abstract. Particulate nitrate contributes a large fraction of secondary aerosols. Despite understanding of its important role in regional air quality and global climate, long-term continuous measurements are rather limited in China. In this study, we conducted online measurement of PM2.5 (particulate matter with diameters less than 2.5 µm) nitrate for 2 years from March 2014 to February 2016 using the Monitor for AeRosols and Gases in ambient Air (MARGA) in the western Yangtze River Delta (YRD), eastern China, and investigate the main factors that influenced its temporal variations and formation pathways. Compared to other sites in China, an overall high concentration of particulate nitrate was observed, with a mean value of 15.8 µg m−3 (0.5 to 92.6 µg m−3). Nitrate on average accounted for 32 % of the total mass of water-soluble ions and the proportion increased with PM loading, indicating that nitrate is a major driver of haze pollution episodes in this region. Sufficient ammonia drove most nitrate into the particle phase in the form of ammonium nitrate. A typical seasonal cycle of nitrate was observed, with the concentrations in winter on average 2 times higher than those in summer mainly due to different meteorological conditions. In summer, the diurnal variation of particulate nitrate was determined by thermodynamic equilibrium, resulting in a much lower concentration during daytime despite a considerable photochemical production. Air masses from the polluted YRD and biomass burning region contributed to the high nitrate concentration during summer. In winter, particulate nitrate did not reveal an evident diurnal variation. Regional transport from northern China played an important role in enhancing nitrate concentration. A total of 18 nitrate episodes were selected to understand the processes that drive the formation of high concentration of nitrate. Rapid nitrate formation was observed during the pre-episode (the day before nitrate episode day) nights, and dominated the increase of total water-soluble ions. Calculated nitrate from N2O5 hydrolysis was highly correlated to and accounted for 80 % of the observed nitrate, suggesting that N2O5 hydrolysis was a major contributor to the nitrate episodes. Our results suggested that rapid formation of nitrate could be a main cause for extreme aerosol pollution events in the YRD during winter, and illustrated the urgent need to control NOx emission.


2017 ◽  
Vol 1 (7) ◽  
pp. 1601-1610 ◽  
Author(s):  
Haibo Su ◽  
Pengli Zhu ◽  
Leicong Zhang ◽  
Fengrui Zhou ◽  
Xianwen liang ◽  
...  

A facile and efficient method has been developed to synthesize water soluble graphene (WSG), and MSCs could be easily fabricated by direct printing using WSG-based ink.


1970 ◽  
Vol 32 (1) ◽  
pp. 41-53
Author(s):  
YN Jolly ◽  
A Islam ◽  
SB Quraishi ◽  
AI Mustafa

The impact of various dilutions (2.5, 5, 10, 25 and 50%) of paint industry effluent on physico-chemical properties of soil and the germination, growth and dry matter productions of corn (Zea mays L.) and rice (Oryza sativa L.) have been studied. The effluent was acidic and had low BOD and COD values because of its low content of suspended solid. It contained high concentration of calcium, medium concentrations of nitrogen, sodium, potassium, sulphate, chloride and low concentrations of phosphorus, magnesium and bicarbonate. The trace element like Mn, Ni, Cu, Zn and Pb were measured in the μg L-1 level. On irrigation of soil with the effluent an increase in the water soluble salts, pH, electrical conductivity, cation exchange capacity, nitrogen, phosphorus potassium, sodium, calcium, magnesium and iron contents of the soil for effluent concentrations of 2.5, 5 and 10% were observed but all these parameters were found to decrease on treatment of the soil with the effluent concentration of 25% and above. The effluent of the lower concentrations (2.5, 5 and 10%) enhanced the growth of both crops. However, negative effects on seed germination, dry matter production and the yield of both crops were found for the effluent concentration of 25% and above. doi: 10.3329/jbas.v32i1.2441 Journal of Bangladesh Academy of Sciences, Vol. 32, No. 1, 41-53, 2008


2018 ◽  
Author(s):  
Sapana Nongmaithem ◽  
Sameera Devulapalli ◽  
Yellamaraju Sreelakshmi ◽  
Rameshwar Sharma

One sentence summaryN-1-naphthylphthalamic acid (NPA) treatment stimulates tomato hypocotyl elongation likely by elevating ethylene emission and lowering indole-3-butyric acid levels in the seedlings.AbstractIn higher plants, phytohormone indole-3-acetic acid is characteristically transported from the apex towards the base of the plant, termed as polar auxin transport (PAT). Among the inhibitors blocking PAT, N-1-naphthylphthalamic acid (NPA) that targets ABCB transporters is most commonly used. NPA-treated light-grown Arabidopsis seedlings show severe inhibition of hypocotyl and root elongation. In light-grown tomato seedlings, NPA inhibited root growth, but contrary to Arabidopsis stimulated hypocotyl elongation. The NPA-stimulation of hypocotyl elongation was milder in blue, red, and far-red light-grown seedlings. The NPA-treatment stimulated emission of ethylene from the seedlings. The scrubbing of ethylene by mercuric perchlorate reduced NPA-stimulated hypocotyl elongation. NPA action on hypocotyl elongation was antagonized by 1-methylcyclopropene, an inhibitor of ethylene action. NPA-treated seedlings had reduced levels of indole-3-butyric acid and higher levels of zeatin in the shoots. NPA did not alter indole-3-acetic levels in shoots. The analysis of metabolic networks indicated that NPA-treatment induced moderate shifts in the networks compared to exogenous ethylene that induced a drastic shift in metabolic networks. Our results indicate that in addition to ethylene, NPA-stimulated hypocotyl elongation in tomato may also involve zeatin and indole-3-butyric acid. Our results indicate that NPA-mediated physiological responses may vary in a species-specific fashion.


Antioxidants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1894
Author(s):  
Marcelo Villagran ◽  
Jorge Ferreira ◽  
Miquel Martorell ◽  
Lorena Mardones

Vitamin C is a water-soluble antioxidant associated with the prevention of the common cold and is also a cofactor of hydrolases that participate in the synthesis of collagen and catecholamines, and in the regulation of gene expression. In cancer, vitamin C is associated with prevention, progression, and treatment, due to its general properties or its role as a pro-oxidant at high concentration. This review explores the role of vitamin C in cancer clinical trials and the aspects to consider in future studies, such as plasmatic vitamin C and metabolite excretion recording, and metabolism and transport of vitamin C into cancer cells. The reviewed studies show that vitamin C intake from natural sources can prevent the development of pulmonary and breast cancer, and that vitamin C synergizes with gemcitabine and erlotinib in pancreatic cancer. In vitro assays reveal that vitamin C synergizes with DNA-methyl transferase inhibitors. However, vitamin C was not associated with cancer prevention in a Mendelian randomized study. In conclusion, the role of vitamin C in the prevention and treatment of cancer is still an ongoing area of research. It is necessary that new phase II and III clinical trials be performed to collect stronger evidence of the therapeutic role of vitamin C in cancer.


Author(s):  
Shashi K. Sharma

Brassinsteroids (BRs) are a class of novel plant hormones gaining importance as potential allies of agricultural development worldwide. Research findings on influences of exogenous BRs application on various aspects of growth and development like vegetative growth, flowering, fruit set, fruit growth, ripening, storage, and tolerance to various biotic and abiotic stresses in fruit plants’ have been reviewed and discussed. The molecular or biochemical aspects of BRs responses to modulate growth and productivity by activating or withholding enzymatic reaction of different biochemical pathways of fruit plants have been elaborated. BRs are involved in ripening and fruit quality development of climacteric and non-climacteric fruits; as per reports of many researchers, they improve fruit color, phenolics, anti-oxidant activities and post-harvest life of many fruits. Fruit cracking in litchi has been found to be significantly reduced due to BRs application. This group of plant hormones possess the capacity to negate genetoxicity and pesticidal residues in many horticultural crops; it reflects the extension of their uses in producing consumer-friendly fruits through BRs application. One of the biggest advantages of BRs application is controlling favorable plant responses under abiotic and biotic stresses; plants have been reported to manage these stresses through modifications in various gene expressions and physiological processes under the influence of the BRs. The need for in-depth studies has been speculated for optimizing the concentration of BRs application together with the standardization of critical stages for harnessing the benefit of quality orchard productivity under varied growing conditions.


Polymers ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 616 ◽  
Author(s):  
Xi Wang ◽  
Pei Yang ◽  
Qian Feng ◽  
Taotao Meng ◽  
Jing Wei ◽  
...  

Biomass-based carbon quantum dots (CQDs) have become a significant carbon materials by their virtues of being cost-effective, easy to fabricate and low in environmental impact. However, there are few reports regarding using cyanobacteria as a carbon source for the synthesis of fluorescent CQDs. In this study, the low-cost biomass of cyanobacteria was used as the sole carbon source to synthesize water-soluble CQDs by a simple hydrothermal method. The synthesized CQDs were mono-dispersed with an average diameter of 2.48 nm and exhibited excitation-dependent emission performance with a quantum yield of 9.24%. Furthermore, the cyanobacteria-derived CQDs had almost no photobleaching under long-time UV irradiation, and exhibited high photostability in the solutions with a wide range of pH and salinity. Since no chemical reagent was involved in the synthesis of CQDs, the as-prepared CQDs were confirmed to have low cytotoxicity for PC12 cells even at a high concentration. Additionally, the CQDs could be efficiently taken up by cells to illuminate the whole cell and create a clear distinction between cytoplasm and nucleus. The combined advantages of green synthesis, cost-effectiveness and low cytotoxicity make synthesized CQDs a significant carbon source and broaden the application of cyanobacteria and provide an economical route to fabricate CQDs on a large scale.


2013 ◽  
Vol 13 (5) ◽  
pp. 2735-2756 ◽  
Author(s):  
T. L. Lathem ◽  
A. J. Beyersdorf ◽  
K. L. Thornhill ◽  
E. L. Winstead ◽  
M. J. Cubison ◽  
...  

Abstract. The NASA DC-8 aircraft characterized the aerosol properties, chemical composition, and cloud condensation nuclei (CCN) concentrations of the summertime Arctic during the 2008 NASA Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) campaign. Air masses characteristic of fresh and aged biomass burning, boreal forest, Arctic background, and anthropogenic industrial pollution were sampled. Observations were spatially extensive (50–85° N and 40–130° W) and exhibit significant variability in aerosol and CCN concentrations. The chemical composition was dominated by highly oxidized organics (66–94% by volume), with a water-soluble mass fraction of more than 50%. The aerosol hygroscopicity parameter, κ, ranged between κ = 0.08–0.32 for all air mass types. Industrial pollution had the lowest κ of 0.08 ± 0.01, while the Arctic background had the highest and most variable κ of 0.32 ± 0.21, resulting from a lower and more variable organic fraction. Both fresh and aged (long-range transported) biomass burning air masses exhibited remarkably similar κ (0.18 ± 0.13), consistent with observed rapid chemical and physical aging of smoke emissions in the atmosphere, even in the vicinity of fresh fires. The organic hygroscopicity (κorg) was parameterized by the volume fraction of water-soluble organic matter (εWSOM), with a κ = 0.12, such that κorg = 0.12εWSOM. Assuming bulk (size-independent) composition and including the κorg parameterization enabled CCN predictions to within 30% accuracy for nearly all environments sampled. The only exception was for industrial pollution from Canadian oil sands exploration, where an external mixture and size-dependent composition was required. Aerosol mixing state assumptions (internal vs. external) in all other environments did not significantly affect CCN predictions; however, the external mixing assumption provided the best results, even though the available observations could not determine the true degree of external mixing and therefore may not always be representative of the environments sampled. No correlation was observed between κorg and O : C. A novel correction of the CCN instrument supersaturation for water vapor depletion, resulting from high concentrations of CCN, was also employed. This correction was especially important for fresh biomass burning plumes where concentrations exceeded 1.5×104 cm−3 and introduced supersaturation depletions of ≥25%. Not accounting for supersaturation depletion in these high concentration environments would therefore bias CCN closure up to 25% and inferred κ by up to 50%.


2020 ◽  
Vol 38 (15_suppl) ◽  
pp. e15635-e15635
Author(s):  
Jian Zhang ◽  
Qiang Fu ◽  
Bian Li ◽  
Yan Han ◽  
Dong Chen ◽  
...  

e15635 Background: To explore the nature of hydrogen peroxide at higher dosage for denature-aggregation of tumor with drugs through aggregation in denatured tumor as a coagulum for drug depot and prolong function of drug. Methods: (1). Preparation for two 5 ml of BLM-I131, one diluted with 0.12 ml NS and 0.2 ml (0.2mCi = 49.67µg BLM) for tumor injection in control group; one diluted with 0.12 ml of H2O2 (0.833 mg/ml) and 0.2 ml (0.2mCi = 49.67µg BLM) for tumor injection in experimental group. (2).Tumor imaging with BLM-I131 analyzed at different time points. (3). Radioactivity in tumor of mice analyzed under SPECT scanning imaging instrument at the 0, 5 h, 1 h, 2 h, 4 h, 8 h, 24 h, 48 h, 96 h, 120 h, 144 h and 168 h, activity of isotope I131 is representing the BLM retaining time in tumor. (4). Also, tumor sectioned and observed cellular and extracellular matrix changes of histological structure. Results: It was observed that BLM-I131 with ROS in tumors sustained for 168 hours while BLM-I131 with NS in tumors sustained for 8 hours only. Radioactivity of BLM-I131 in tumors with ROS reach at peak 1.5 hours and second peak at 20 hours by average to extend to 168 hours, while radioactivity of BLM-I131 in tumors with NS reached at peak in 0.5 hour, decreased to 30% in 1.5 hour quickly to background in 8 hours; We observed the extracellular matrix changes in experimental tumor while no changes in control tumor. Conclusions: A water soluble oxidant mixed with free drug can play a biological scissors role to chop tumor matrix, then it resulted in a denature tumor matrix into a coagulation for a drug depot, it showed drug of BLM-I131 sustained in tumor for a long time; while oxidant plays an important role to punch holes on cell membrane and resulted a high permeability for high concentration drug in each cancer cells.


Sign in / Sign up

Export Citation Format

Share Document