scholarly journals Biomass as a major component of pellets

2018 ◽  
pp. 81-92
Author(s):  
Monika Smaga ◽  
Grzegorz Wielgosiński ◽  
Aleksander Kochański ◽  
Katarzyna Korczak

The article describes the quality parameters of the selected elements of biomass as a potential ecological biofuel. Several selected elements of a type of biomass were tested to determine the calorific value, humidity, content of sulfur and amount of ash produced in burning process. The concept of biomass and the legal aspects of its combustion are described. The research of biomass samples revealed that they may be turned into a high-energy, ecologically solid biofuel. Production of biofuel from the tested biomass does not require any additional binders. Studies have shown that the tested material can also act as a component of composite pellets. The quality parameters of such pellets can be determined with the composite calculator that is described in this article. The article also describes the technical aspects of the pellet production line, which should be applied to produce good-quality pellets from the tested types of biomass.

2019 ◽  
Vol 8 (3) ◽  
Author(s):  
Paula Martucheli Amaral ◽  
Luciano Donizeti Varanda ◽  
Gabriela Tami Nakashima ◽  
Pâmela Beatriz Moreira De Oliveira ◽  
Luis Ricardo Oliveira Santos ◽  
...  

The objective of this study was the characterization, analysis and compaction of residues from castor oil plant pie extraction to verify its potential as solid biofuel. The chemical analysis, the mechanical test and the gross calorific value had satisfactory results. With the extraction of residual oil of the material there was a decrease on the high heating value. The produced briquettes presented good longitudinal expansion as well as mechanical strenght, however the presence of residual oil had influence on their strenght. In conclusion, the castor oil plant pie possesses  energetic characteristics suitable for solid biofuel production, in addition it contributes with the reduction of industrial waste amount.


Author(s):  
E. Repsa ◽  
E. Kronbergs ◽  
M. Smits

The paper present experimental investigation results of common reeds (Phragmites australis) particle compacting in closed die. Common reeds are important natural biomass resource in Latvia. Compacting of biomass is very complicated process for solid biofuel production and there are many factors influencing to this process. The quality parameters of compacted biomass are described by European countries standards for solid biofuel. Density is the most important quality parameter of biomass compacting. The paper present results of common reeds particles compacting mechanism in closed die. Maximum pressure 212 MPa had been achieved in compacting. For compacting process evaluation has been determined pressing energy and density of briquettes. The minimum of density 0.87 g cm-3 have briquettes with particle size 12 – 13 mm, but maximum density 1.03 – 1.04 g cm-3 two particle sizes < 0.5 mm and 32 – 33 mm briquettes. Maximum value of energy consumption for compacting (~172 kJ kg-1) has been obtained for reed particle size 32 – 33 mm, minimum value (~53 kJ kg-1) for particle size less than 0.5 mm.


2018 ◽  
Vol 10 ◽  
pp. 02006 ◽  
Author(s):  
Tatiana Ivanova ◽  
Bohumil Havrland ◽  
Radek Novotny ◽  
Alexandru Muntean ◽  
Petr Hutla

Biomass is doubtless a very significant source of renewable energy being worldwide abundant with high energy potential. This paper deals with assessment energy consumption at especially grinding and briquetting processes, which should result in essential economy of energy at solid biofuel production. Various types of raw materials were used at the experiment such as hemp (Cannabis sativa L.) biomass, two species of Miscanthus (Miscanthus sinensis, Miscanthus x gigantheus) and apple wood biomass. These materials were dried, grinded and pressed by piston press having pressing chamber diameter of 65 mm. Materials were grinded into three fractions (4 mm, 8 mm and 12 mm). Material throughput (kg.h-1) and energy consumption (kWh.t-1) were registered. As to results: the highest throughput at both grinding cases as well as briquetting was found at apple wood biomass; however the energy consumption during briquetting of apple wood was relatively high. The worst results concerning throughput and energy consumption (especially at briquetting) were found at hemp biomass. Nevertheless, briquettes made of hemp had the best mechanical durability. Both Miscunthus species (herbaceous biomass) have very similar parameters and showed quite good relation between throughput and energy consumption at the used machines.


2021 ◽  
Vol 9 (1) ◽  
pp. 18
Author(s):  
Jakub Frankowski ◽  
Dominika Sieracka

Hemp biomass is useful in many branches of the economy. Hemp cultivation to obtain seeds has been gaining importance recently. In this process, shredded straw is a waste biomass which can be used for energy purposes. The possibilities for using waste hemp straw for solid biofuel production are described in this extended abstract, using the example of the Henola variety. The analyzed biomass was characterized by a high content of cellulose (over 40%) and hemicellulose (almost 30%), as well as a high calorific value (18,300 kJ·kg−1) and heat of combustion (17,100 kJ·kg−1).


2016 ◽  
Vol 47 (1) ◽  
pp. 17 ◽  
Author(s):  
Daniele Duca ◽  
Andrea Pizzi ◽  
Manuela Mancini ◽  
Giorgio Rossini ◽  
Chiara Mengarelli ◽  
...  

The increase in the demand for energy supply during the past few decades has brought and will bring to a growth in the utilisation of renewable resources, in particular of solid biomasses. Considering the variability in the properties of biomass and the globalisation of the timber market, a chemical and physical characterisation is essential to determine the biomass quality. The specific international standards on solid biofuels (ISO 17225 series) describe proper specification and classification of wood chip and pellet, to ensure appropriate quality. Moreover, standard requires information about origin and source of the biomass, normally only to be declared by the producers. In order to fulfill the requirements for the biomass quality, the origin and the source should be assessed, even if currently is hard to determine, in particular on milled or densified biomass. Infrared spectroscopy can provide information on the biomass at the chemical level, directly linked also to its origin and source. This technique is fast and not destructive thus suitable also for online monitoring along the biofuel production chain. In this study, 60 samples belonging to 8 different species were collected and related spectra were acquired using a Fourier transform infrared (IR) spectrometer equipped with a module for solid analysis and analysed by principal component analysis. The results obtained show that the method is very efficient in the identification between coniferous and deciduous wood (99% confidence level) and good results were obtained in the recognition of coniferous/deciduous mixtures, too. Nevertheless, some clear differences have been also noted among intra-class grouping, but additional tests should be carried out. This technique can provide useful information to solid biofuel stakeholders about wood quality and origin, important especially for sustainability issues. Further work will be oriented to the development of IR methodologies for the fast measurement of other important biomass parameters (<em>e.g.</em>, ash content, high calorific value, nitrogen content, <em>etc</em>.).


TAPPI Journal ◽  
2010 ◽  
Vol 9 (6) ◽  
pp. 24-30 ◽  
Author(s):  
NIKLAS BERGLIN ◽  
PER TOMANI ◽  
HASSAN SALMAN ◽  
SOLVIE HERSTAD SVÄRD ◽  
LARS-ERIK ÅMAND

Processes have been developed to produce a solid biofuel with high energy density and low ash content from kraft lignin precipitated from black liquor. Pilot-scale tests of the lignin biofuel were carried out with a 150 kW powder burner and a 12 MW circulating fluidized bed (CFB) boiler. Lignin powder could be fired in a powder burner with good combustion performance after some trimming of the air flows to reduce swirl. Lignin dried to 10% moisture content was easy to feed smoothly and had less bridging tendencies in the feeding system than did wood/bark powder. In the CFB boiler, lignin was easily handled and cofired together with bark. Although the filter cake was broken into smaller pieces and fines, the combustion was not disturbed. When cofiring lignin with bark, the sulfur emission increased compared with bark firing only, but most of the sulfur was captured by calcium in the bark ash. Conventional sulfur capture also occurred with addition of limestone to the bed. The sulfur content in the lignin had a significantly positive effect on reducing the alkali chloride content in the deposits, thus reducing the high temperature corrosion risk.


Author(s):  
O. M. Salamov ◽  
F. F. Aliyev

The paper discusses the possibility of obtaining liquid and gaseous fuels from different types of biomass (BM) and combustible solid waste (CSW) of various origins. The available world reserves of traditional types of fuel are analyzed and a number of environmental shortcomings that created during their use are indicated. The tables present the data on the conditional calorific value (CCV) of the main traditional and alternative types of solid, liquid and gaseous fuels which compared with CCV of various types of BM and CSW. Possible methods for utilization of BM and CSW are analyzed, as well as the methods for converting them into alternative types of fuel, especially into combustible gases.Reliable information is given on the available oil and gas reserves in Azerbaijan. As a result of the research, it was revealed that the currently available oil reserves of Azerbaijan can completely dry out after 33.5 years, and gas reserves–after 117 years, without taking into account the growth rates of the exported part of these fuels to European countries. In order to fix this situation, first of all it is necessary to use as much as possible alternative and renewable energy sources, especially wind power plants (WPP) and solar photovoltaic energy sources (SFES) in the energy sector of the republic. Azerbaijan has large reserves of solar and wind energy. In addition, all regions of the country have large reserves of BM, and in the big cities, especially in industrial ones, there are CSW from which through pyrolysis and gasification is possible to obtain a high-quality combustible gas mixture, comprising: H2 + CO + CH4, with the least amount of harmful waste. The remains of the reaction of thermochemical decomposition of BM and CSW to combustible gases can also be used as mineral fertilizers in agriculture. The available and projected resources of Azerbaijan for the BM and the CSW are given, as well as their assumed energy intensity in the energy sector of the republic.Given the high energy intensity of the pyrolysis and gasification of the BM and CSW, at the present time for carrying out these reactions, the high-temperature solar installations with limited power are used as energy sources, and further preference is given to the use of WPP and SFES on industrial scale.


2021 ◽  
Vol 195 ◽  
pp. 110775
Author(s):  
Congyu Zhang ◽  
Shih-Hsin Ho ◽  
Wei-Hsin Chen ◽  
Chun Fong Eng ◽  
Chin-Tsan Wang

2010 ◽  
Vol 64 (2) ◽  
Author(s):  
Agnieszka Zawadzka ◽  
Liliana Krzystek ◽  
Stanisław Ledakowicz

AbstractTo carry out autothermal drying processes during the composting of biomass, a horizontal tubular reactor was designed and tested. A biodrying tunnel of the total capacity of 240 dm3 was made of plastic material and insulated with polyurethane foam to prevent heat losses. Municipal solid waste and structural plant material were used as the input substrate. As a result of autothermal drying processes, moisture content decreased by 50 % of the initial moisture content of organic waste of about 800 g kg−1. In the tested cycles, high temperatures of biodried waste mass were achieved (54–56°C). An appropriate quantity of air was supplied to maintain a satisfactory level of temperature and moisture removal in the biodried mass and high energy content in the final product. The heat of combustion of dried waste and its calorific value were determined in a calorimeter. Examinations of pyrolysis and gasification of dried waste confirmed their usefulness as biofuel of satisfactory energy content.


2018 ◽  
Vol 10 (9) ◽  
pp. 3254 ◽  
Author(s):  
Miguel-Angel Perea-Moreno ◽  
Francisco Manzano-Agugliaro ◽  
Quetzalcoatl Hernandez-Escobedo ◽  
Alberto-Jesus Perea-Moreno

The peanut (Arachys hypogaea) is a plant of the Fabaceae family (legumes), as are chickpeas, lentils, beans, and peas. It is originally from South America and is used mainly for culinary purposes, in confectionery products, or as a nut as well as for the production of biscuits, breads, sweets, cereals, and salads. Also, due to its high percentage of fat, peanuts are used for industrialized products such as oils, flours, inks, creams, lipsticks, etc. According to the Food and Agriculture Organization (FAO) statistical yearbook in 2016, the production of peanuts was 43,982,066 t, produced in 27,660,802 hectares. Peanuts are grown mainly in Asia, with a global production rate of 65.3%, followed by Africa with 26.2%, the Americas with 8.4%, and Oceania with 0.1%. The peanut industry is one of the main generators of agroindustrial waste (shells). This residual biomass (25–30% of the total weight) has a high energy content that is worth exploring. The main objectives of this study are, firstly, to evaluate the energy parameters of peanut shells as a possible solid biofuel applied as an energy source in residential and industrial heating installations. Secondly, different models are analysed to estimate the higher heating value (HHV) for biomass proposed by different scientists and to determine which most accurately fits the determination of this value for peanut shells. Thirdly, we evaluate the reduction in global CO2 emissions that would result from the use of peanut shells as biofuel. The obtained HHV of peanut shells (18.547 MJ/kg) is higher than other biomass sources evaluated, such as olive stones (17.884 MJ/kg) or almond shells (18.200 MJ/kg), and similar to other sources of biomass used at present for home and industrial heating applications. Different prediction models of the HHV value proposed by scientists for different types of biomass have been analysed and the one that best fits the calculation for the peanut shell has been determined. The CO2 reduction that would result from the use of peanut shells as an energy source has been evaluated in all production countries, obtaining values above 0.5 ‰ of their total emissions.


Sign in / Sign up

Export Citation Format

Share Document