scholarly journals An Optical Scattering Based Cost-Effective Approach Towards Quantitative Assessment Of Turbidity And Particle Size Estimation In Drinking Water Using Image Analysis

2020 ◽  
Author(s):  
Soumendra Singh ◽  
Animesh Halder ◽  
Amrita Banerjee ◽  
Nur Hasan ◽  
Arpan Bera ◽  
...  

Contaminated water consumption primarily for drinking purposes is the cause of approximately 502,000 global deaths every year mostly in economically challenging countries indicating the need for a cheap, easy to use a yet robust and scientifically proven method for determination of water quality. In this work, we have characterized the water quality utilizing the principles of optical scattering by the suspended particulate matter using a low-cost wireless-enabled camera. The images grabbed by the camera on an optically lit cast screen on a red and a blue dot were allowed to arrive through a “model scattering medium". An estimate of the amount of light reaching the detector camera essentially provide Optical Density of the medium. Edge blurring of the captured images reveals information of the suspended particulates (sizes) in the medium. The individual pixel information was analyzed and the 'edge blurring' phenomenon was shown on an RGB intensity curve. The average diameter of the dominant suspended particles presents in the model scattering medium is also estimated from the fitting parameters and compared with that from commercially available Dynamic Light Scattering (DLS) instrument. The system is effective in measuring bacterial growth and the acquired data have been compared with that of the growth curve obtained from the gold standard method. Limit of Detection (LOD) of the set-up was found to be 48 ppm. The extremely cost-effective nature of the set-up, the innovative method of analysis, and easy availability of components would expectedly make water quality assessment very easy and user friendly.

Chemosensors ◽  
2018 ◽  
Vol 6 (4) ◽  
pp. 57 ◽  
Author(s):  
Andrew Donohoe ◽  
Gareth Lacour ◽  
Peter McCluskey ◽  
Dermot Diamond ◽  
Margaret McCaul

A sensing platform for the in situ, real-time analysis of phosphate in natural waters has been realised using a combination of microfluidics, colorimetric reagent chemistries, low-cost LED-based optical detection and wireless communications. Prior to field deployment, the platform was tested over a period of 55 days in the laboratory during which a total of 2682 autonomous measurements were performed (854 each of sample, high standard and baseline, and 40 × 3 spiked solution measurements). The platform was subsequently field-deployed in a freshwater stream at Lough Rea, Co., Galway, Ireland, to track changes in phosphate over a five day period. During this deployment, 165 autonomous measurements (55 each of sample, high standard, and baseline) were performed and transmitted via general packet radio service (GPRS) to a web interface for remote access. Increases in phosphate levels at the sampling location coincident with rainfall events (min 1.45 µM to max 10.24 µM) were detected during the deployment. The response was found to be linear up to 50 µM PO43−, with a lower limit of detection (LOD) of 0.09 µM. Laboratory and field data suggest that despite the complexity of reagent-based analysers, they are reasonably reliable in remote operation, and offer the best opportunity to provide enhanced in situ chemical sensing capabilities. Modifications that could further improve the reliability and scalability of these platforms while simultaneously reducing the unit cost are discussed.


Author(s):  
Ibrahim Abba ◽  
◽  
Salisu Muhammad ◽  
Lawan Bashir D. Bala ◽  
Emmanuel Joseph ◽  
...  

Lack of equipment to study mobile satellites signal propagation in colleges and universities prone this research work. A Handheld GPS receiver used as a tool for training college students to learn mobile satellite signal propagation using Global Positioning System (GPS) approach. These refer to the experimental setup of the equipment that is the connection done between the GPS receiver with a computer. The satellite propagation data received from the GPS machine can be recorded continuously with an updates rate of 2 seconds. The experiment was carried out in an open space environment at predetermine locations using simple setup, where a cheap, readily and available portable GPS receiver were connected to the computer to acquire propagation data. The computer was equipped with a self-developed package graphical user interface (GUI) monitoring the propagation information from the GPS satellites and saving the data. The developed system can be set up anywhere at any location. The sate-up will serve as a database for satellites view and analysis of mobile satellite data orbiting the sky of Northern part of Nigeria. Cost effective referring to a low-cost and readily available GPS receiver that can be easily set-up as compared to equipment designed specifically for an experimental purpose that is normally very expensive.


2022 ◽  
Vol 12 (1) ◽  
pp. 0-0

Security along the international border is a critical process in security assessment; It must be exercised the 24x7. With the advancements in wireless IoT technology, it has become much easier to design, develop and deploy a cost-effective, automatic and efficient system for intrusion detection in the context of surveillance. This paper set up to set up the most efficient surveillance solution, we propose a Border Surveillance Systems and sensitive sites. this surveillance and security system is to detect and track intruders trespassing into the monitoring area along the border, it able which triggers off precocious alerts and valuation necessary for the catch of efficient measurements in case of a threat. Our system is based on the classification of the human gestures drawn from videos envoy by Drones equipped with cameras and sensors in real-time. All accomplished experimentation and acquired results showed the benefit diverted from the use of our system and therefore it enables our soldiers to watch the borders at each and every moment to effectively and at low cost.


2021 ◽  
Vol 7 (2) ◽  
pp. 550-553
Author(s):  
Benjamin K. Naggay ◽  
Kerstin Frey ◽  
Markus Schneider ◽  
Kiriaki Athanasopulu ◽  
Günter Lorenz ◽  
...  

Abstract Soft lithography, a tool widely applied in biology and life sciences with numerous applications, uses the soft molding of photolithography-generated master structures by polymers. The central part of a photolithography set-up is a mask-aligner mostly based on a high-pressure mercury lamp as an ultraviolet (UV) light source. This type of light source requires a high level of maintenance and shows a decreasing intensity over its lifetime, influencing the lithography outcome. In this paper, we present a low-cost, bench-top photolithography tool based on ninety-eight 375 nm light-emitting diodes (LEDs). With approx. 10 W, our presented lithography set-up requires only a fraction of the energy of a conventional lamp, the LEDs have a guaranteed lifetime of 1000 h, which becomes noticeable by at least 2.5 to 15 times more exposure cycles compared to a standard light source and with costs less than 850 C it is very affordable. Such a set-up is not only attractive to small academic and industrial fabrication facilities who want to enable work with the technology of photolithography and cannot afford a conventional set-up, but also microfluidic teaching laboratories and microfluidic research and development laboratories, in general, could benefit from this cost-effective alternative. With our self-built photolithography system, we were able to produce structures from 6 μm to 50 μm in height and 10 μm to 200 μm in width. As an optional feature, we present a scaled-down laminar flow hood to enable a dust-free working environment for the photolithography process.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3775
Author(s):  
Arif Ul Alam ◽  
Dennis Clyne ◽  
M. Jamal Deen

Multi-parameter water quality monitoring is crucial in resource-limited areas to provide persistent water safety. Conventional water monitoring techniques are time-consuming, require skilled personnel, are not user-friendly and are incompatible with operating on-site. Here, we develop a multi-parameter water quality monitoring system (MWQMS) that includes an array of low-cost, easy-to-use, high-sensitivity electrochemical sensors, as well as custom-designed sensor readout circuitry and smartphone application with wireless connectivity. The system overcomes the need of costly laboratory-based testing methods and the requirement of skilled workers. The proposed MWQMS system can simultaneously monitor pH, free chlorine, and temperature with sensitivities of 57.5 mV/pH, 186 nA/ppm and 16.9 mV/°C, respectively, as well as sensing of BPA with <10 nM limit of detection. The system also provides seamless interconnection between transduction of the sensors’ signal, signal processing, wireless data transfer and smartphone app-based operation. This interconnection was accomplished by fabricating nanomaterial and carbon nanotube-based sensors on a common substrate, integrating these sensors to a readout circuit and transmitting the sensor data to an Android application. The MWQMS system provides a general platform technology where an array of other water monitoring sensors can also be easily integrated and programmed. Such a system can offer tremendous opportunity for a broad range of environmental monitoring applications.


2021 ◽  
Author(s):  
Iulia ANTOHE ◽  
Iuliana IORDACHE ◽  
Vlad-Andrei ANTOHE ◽  
Gabriel SOCOL

Abstract The paper reports for the first time an innovative polyaniline (PANI)/platinum (Pt)-coated fiber optic – surface plasmon resonance (FO-SPR) sensor used for highly-sensitive 4-nitrophenol (4-NP) pollutant detection. The Pt thin film was coated over an unclad core of an optical fiber (FO) using a DC magnetron sputtering technique, while the 4-NP responsive PANI layer was synthetized using a cost-effective electroless polymerization method. The presence of the electrolessly-grown PANI on the Pt-coated FO was observed by field-emission scanning electron microscopy (FE-SEM) and subsequently evidenced by energy dispersive X-ray analysis (EDX). These FO-SPR sensors with a demonstrated sensitivity of 1515 nm/RIU were then employed for 4-NP sensing, exhibiting am excellent limit of detection (LOD) in the low picomolar range (0.17 pM). The proposed sensor’s configuration has many other advantages, such as low-cost production, small size, immunity to electromagnetic interferences, remote sensing capability, and moreover, can be operated as a “stand-alone device”, making it thus well-suited for applications such as “on-site” screening of extremely low-level trace pollutants.


2021 ◽  
Vol 13 (18) ◽  
pp. 10270
Author(s):  
Luis Cámara-Díaz ◽  
José Ramírez-Faz ◽  
Rafael López-Luque ◽  
Francisco José Casares

A significant percentage of energy consumption in buildings is to produce hot water. Photovoltaic solar heating can be considered a clean and renewable energy option—easy to install, silent, and without maintenance—to replace the consumption of fossil fuels used in this process. This paper presents a study that simulates the heating process using thermal electrical resistors powered by photovoltaic solar energy. For this purpose, a solar hot water installation has been set up. This installation consists of a water tank with an electric resistance connected to photovoltaic modules by means of a low-cost experimental electronic conversion system. This electronic system has been developed to avoid the need for inverters or batteries, typical of traditional photovoltaic solar installations. It is an isolated system since it is not connected to the power grid. The photovoltaic solar modules, the tank, and its heating resistance correspond to commercial models. This electronic system has a 95.06% yield, and it operates across the whole irradiance’s daily curve, having verified its operation over several months. Even though this is an experimental electronic device, it is financially viable as the cost of its components is below EUR 60 per kW peak capacity. The results obtained in a proper functioning system are promising, demonstrating the technical feasibility and economic advantages of using this type of isolated photovoltaic system to power heating processes.


Sensors ◽  
2020 ◽  
Vol 20 (3) ◽  
pp. 676 ◽  
Author(s):  
Jose-Antonio López-Pastor ◽  
Ascensión Martínez-Sánchez ◽  
Juan Aznar-Poveda ◽  
Antonio-Javier García-Sánchez ◽  
Joan García-Haro ◽  
...  

Ascorbic Acid (AA) is a natural and powerful water-soluble antioxidant associated with long-lasting food products. As time passes, the AA content in products sharply decreases, and they become increasingly degraded. There are several techniques to precisely quantify AA concentrations. However, most of them employ costly laboratory instruments, such as High-Performance Liquid Chromatography (HPLC) or complex electrochemical methods, which make unfeasible recurrent AA measurements along the entire supply chain. To address this issue, we contribute with an in-field and real-time voltammetric method, carried out with a low-cost, easy-to-use, and portable device. An unmodified Screen-Printed Electrode (SPE) is used together with the device to achieve short reading times. Our method has been extensively tested in two multifruit juices using three different SPEs. Calibration curves and Limit of Detection were derived for each SPE. Furthermore, periodic experiments were conducted to study the shelf life of juices under consideration. During the analysis, a set of assays for each SPE were implemented to determine the remaining AA amount per juice and compare it with that obtained using HPLC under the same conditions. Results revealed that our cost-effective device is fully comparable to the HPLC equipment, as long as the juice does not include certain interferents; a scenario also contemplated in this article.


2017 ◽  
Vol 10 (1) ◽  
pp. 45
Author(s):  
Indira Roy ◽  
Yelena Naumova ◽  
A. J. Both

Subsistence and smallholder farmers in the Deccan plateau region of India struggle with a predominantly hot and dry climate and often accumulated debt due to the cost of fertilizer that they need to increase yields for profitability. While a low-cost deep-flow technique hydroponic growing system (DFT) as a supplement to soil-based agriculture could help reduce debt, the cost of electricity needed to operate the DFT makes it inaccessible to these farmers. The objective of this project was to test the viability of electricity-free DFT which would substantially reduce production costs. Two DFT systems were set up in a shade net house and prepared with identical nutrients to grow chili pepper seedlings. Each DFT system was oxygenated for 30 minutes per day, one system using an electrical air pump, and the other system was oxygenated manually. After four weeks of growth, the dry mass of the shoots of the chili pepper seedlings in each system was measured. While the pump-oxygenated DFT system produced more dry matter, the manually-oxygenated system produced a larger number of visually healthier plants. Therefore, we conclude that electricity-free DFT hydroponics may be a viable alternative to pump-oxygenated DFT hydroponics, making hydroponic farming a cost-effective option for poor farmers.


Sign in / Sign up

Export Citation Format

Share Document