scholarly journals Development of a Cost-Effective Sensing Platform for Monitoring Phosphate in Natural Waters

Chemosensors ◽  
2018 ◽  
Vol 6 (4) ◽  
pp. 57 ◽  
Author(s):  
Andrew Donohoe ◽  
Gareth Lacour ◽  
Peter McCluskey ◽  
Dermot Diamond ◽  
Margaret McCaul

A sensing platform for the in situ, real-time analysis of phosphate in natural waters has been realised using a combination of microfluidics, colorimetric reagent chemistries, low-cost LED-based optical detection and wireless communications. Prior to field deployment, the platform was tested over a period of 55 days in the laboratory during which a total of 2682 autonomous measurements were performed (854 each of sample, high standard and baseline, and 40 × 3 spiked solution measurements). The platform was subsequently field-deployed in a freshwater stream at Lough Rea, Co., Galway, Ireland, to track changes in phosphate over a five day period. During this deployment, 165 autonomous measurements (55 each of sample, high standard, and baseline) were performed and transmitted via general packet radio service (GPRS) to a web interface for remote access. Increases in phosphate levels at the sampling location coincident with rainfall events (min 1.45 µM to max 10.24 µM) were detected during the deployment. The response was found to be linear up to 50 µM PO43−, with a lower limit of detection (LOD) of 0.09 µM. Laboratory and field data suggest that despite the complexity of reagent-based analysers, they are reasonably reliable in remote operation, and offer the best opportunity to provide enhanced in situ chemical sensing capabilities. Modifications that could further improve the reliability and scalability of these platforms while simultaneously reducing the unit cost are discussed.

Author(s):  
Mohd Azril Riduan ◽  
Mohd Jumain Jalil ◽  
Intan Suhada Azmi ◽  
Afifudin Habulat ◽  
Danial Nuruddin Azlan Raofuddin ◽  
...  

Background: Greener epoxidation by using vegetable oil to create an eco-friendly epoxide is being studied because it is a more cost-effective and environmentally friendly commodity that is safer than non-renewable materials. The aim of this research is to come up with low-cost solutions for banana trunk acoustic panels with kinetic modelling of epoxy-based palm oil. Method: In this study, the epoxidation of palm oleic acid was carried out by in situ performic acid to produce epoxidized palm oleic acid. Results: Banana trunk acoustic panel was successfully innovated based on the performance when the epoxy was applied. Lastly, a mathematical model was developed by using the numerical integration of the 4th order Runge-Kutta method, and the results showed that there is a good agreement between the simulation and experimental data, which validates the kinetic model. Conclusion: Overall, the peracid mechanism was effective in producing a high yield of epoxy from palm oleic acid that is useful for the improvement of acoustic panels based on the banana trunk.


Talanta ◽  
2020 ◽  
Vol 216 ◽  
pp. 120955 ◽  
Author(s):  
Eoin Murray ◽  
Patrick Roche ◽  
Matthieu Briet ◽  
Breda Moore ◽  
Aoife Morrin ◽  
...  

2008 ◽  
Vol 58 (10) ◽  
pp. 2009-2015 ◽  
Author(s):  
U. Rott ◽  
H. Kauffmann

Arsenic in groundwater is a huge problem in numerous regions of the world. Many people are exposed to high arsenic concentrations and consequently risk getting ill or even die as a result of arsenic poisoning. There are several efficient technologies for the removal of arsenic but often these methods have disadvantages, e.g. high costs for installation and/or operation, the need for chemicals or the production of arsenic contaminated filter sludge. These disadvantages can make the application difficult, especially in poor regions. Under suitable ancillary conditions the subterranean (in-situ) treatment, which is often used for iron and manganese removal from groundwater, can also be applied for the removal of arsenic and can be a cost-effective treatment technology. A field trial was carried out with a low-cost in-situ treatment plant in West Bengal/India which is described in this paper, in order to investigate whether this treatment technology is also applicable under the boundary conditions there. As for the in-situ treatment technology besides oxygen no additives are required and no arsenic contaminated filter sludge is produced this technology could be a suitable method for arsenic removal especially in poor regions.


Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5477
Author(s):  
Ivana Podunavac ◽  
Vasa Radonic ◽  
Vesna Bengin ◽  
Nikolina Jankovic

In this paper, a microwave microfluidic sensor based on spoof surface plasmon polaritons (SSPPs) was proposed for ultrasensitive detection of dielectric constant. A novel unit cell for the SSPP structure is proposed and its behaviour and sensing potential analysed in detail. Based on the proposed cell, the SSPP microwave structure with a microfluidic reservoir is designed as a multilayer configuration to serve as a sensing platform for liquid analytes. The sensor is realized using a combination of rapid, cost-effective technologies of xurography, laser micromachining, and cold lamination bonding, and its potential is validated in the experiments with edible oil samples. The results demonstrate high sensitivity (850 MHz/epsilon unit) and excellent linearity (R2 = 0.9802) of the sensor, which, together with its low-cost and simple fabrication, make the proposed sensor an excellent candidate for the detection of small changes in the dielectric constant of edible oils and other liquid analytes.


Sensors ◽  
2018 ◽  
Vol 19 (1) ◽  
pp. 77 ◽  
Author(s):  
Qiao Yu ◽  
Fenfen Zhai ◽  
Hong Zhou ◽  
Zonghua Wang

Basing on the conformation change of aptamer caused by proteins, a simple and sensitive protein fluorescent assay strategy is proposed, which is assisted by the isothermal amplification reaction of polymerase and nicking endonuclease. In the presence of platelet-derived growth factor (PDGF-BB), the natural conformation of a DNA aptamer would change into a Y-shaped complex, which could hybridize with a molecular beacon (MB) and form a DNA duplex, leading to the open state of the MB and generating a fluorescence signal. Subsequently, with further assistance of isothermal recycling amplification strategies, the designed aptamer sensing platform showed an increment of fluorescence. As a benefit of this amplified strategy, the limit of detection (LOD) was lowered to 0.74 ng/mL, which is much lower than previous reports. This strategy not only offers a new simple, specific, and efficient platform to quantify the target protein in low concentrations, but also shows a powerful approach without multiple washing steps, as well as a precious implementation that has the potential to be integrated into portable, low-cost, and simplified devices for diagnostic applications.


Sensors ◽  
2019 ◽  
Vol 19 (2) ◽  
pp. 228 ◽  
Author(s):  
Shurong Tang ◽  
Xiuhua You ◽  
Quanhui Fang ◽  
Xin Li ◽  
Guangwen Li ◽  
...  

A novel turn-on fluorescence assay was developed for the rapid detection of glutathione (GSH) based on the inner-filter effect (IFE) and redox reaction. Molybdenum disulfide quantum dots (MoS2 QDs), which have stable fluorescent properties, were synthesized with hydrothermal method. Manganese dioxide nanosheets (MnO2 NSs) were prepared by exfoliating the bulk δ-MnO2 material in bovine serum albumin (BSA) aqueous solution. The morphology structures of the prepared nanoparticles were characterized by transmission electron microscope (TEM). Studies have shown that the fluorescence of MoS2 QDs could be quenched in the presence of MnO2 NSs as a result of the IFE, and is recovered after the addition of GSH to dissolve the MnO2 NSs. The fluorescence intensity showed a good linear relationship with the GSH concentration in the range 20–2500 μM, the limit of detection was 1.0 μM. The detection method was applied to the analysis of GSH in human serum samples. This simple, rapid, and cost-effective method has great potential in analyzing GSH and in disease diagnosis.


2020 ◽  
Vol 17 (2) ◽  
pp. 131-135
Author(s):  
Zohreh Shahnavaz ◽  
Lia Zaharani ◽  
Mohd Rafie Johan ◽  
Nader Ghaffari Khaligh

Background: In continuation of our previous work and the applications of saccharin, we encouraged to investigate the one-pot synthesis of the aryl iodides by the diazotization of the arene diazonium saccharin salts. Objective: Arene diazonium salts play an important role in organic synthesis as intermediate and a wide variety of aromatic compounds have been prepared using them. A serious drawback of arene diazonium salts is their instability in a dry state; therefore, they must be stored and handled carefully to avoid spontaneous explosion and other hazard events. Methods: The arene diazonium saccharin salts were prepared as active intermediates in situ through the reaction of various aryl amines with tert-butyl nitrite (TBN) in the presence of saccharin (Sac–H). Then, in situ obtained intermediates were used into the diazotization step without separation and purification in the current protocol. Results: A variety of aryl iodides were synthesized at a greener and low-cost method in the presence of TBN, Sac–H, glacial acetic acid, and TEAI. Conclusion: In summary, a telescopic reaction is developed for the synthesis of aryl iodides. The current methodology is safe, cost-effective, broad substrate scope, and metal-free. All used reagents are commercially available and inert to moisture and air. Also, the saccharine and tetraethylammonium cation could be partially recovered from the reaction residue, which reduces waste generation, energy consumption, raw material, and waste disposal costs.


2022 ◽  
Author(s):  
Prabhu Govindasamy ◽  
Sonu Kumar Mahawer ◽  
Jake Mowrer ◽  
Muthukumar Bagavathiannan ◽  
Mahendra Prasad ◽  
...  

Abstract Purpose: The use of cost-effective methods for measurement of WHC is common in underdeveloped and developing countries, but the accuracy of these cost-effective methods compared to the sophisticated and more expensive alternatives is unclear. Methods: To compare different WHC measurement methods, 30 random samples of clay loam and sandy clay loam soils of Jhansi, India were used. The methods compared here were: FAO in-situ method (FAO), Keen Raczkowski box method (KM), funnel method (FM), column method (CM) and pressure plate method (PPA). Results: For WHC measurements the PPA results were comparable to KM and FM methods for sandy clay loam, and KM and FAO methods for clay loam. Conclusion: Therefore, until a reliable method that matches the results of sophisticated analytical methods of soil water measurement is available, different inexpensive analytical methods can be used, but they must be chosen with caution. The findings from this study will facilitate appropriate selection of a suitable method.


2015 ◽  
Vol 7 (13) ◽  
pp. 5396-5405 ◽  
Author(s):  
Deirdre Cogan ◽  
Cormac Fay ◽  
David Boyle ◽  
Conor Osborne ◽  
Nigel Kent ◽  
...  

This study has demonstrated, for the first time, a microfluidic autonomous analyser for the direct determination of nitrate, incorporating a modified version of the chromotropic method resulting in a direct, quick, inexpensive and simple procedure to measure nitrate in situ.


2020 ◽  
Vol 12 (12) ◽  
pp. 2047 ◽  
Author(s):  
Fabio Tosi ◽  
Matteo Rocca ◽  
Filippo Aleotti ◽  
Matteo Poggi ◽  
Stefano Mattoccia ◽  
...  

Monitoring streamflow velocity is of paramount importance for water resources management and in engineering practice. To this aim, image-based approaches have proved to be reliable systems to non-intrusively monitor water bodies in remote places at variable flow regimes. Nonetheless, to tackle their computational and energy requirements, offload processing and high-speed internet connections in the monitored environments, which are often difficult to access, is mandatory hence limiting the effective deployment of such techniques in several relevant circumstances. In this paper, we advance and simplify streamflow velocity monitoring by directly processing the image stream in situ with a low-power embedded system. By leveraging its standard parallel processing capability and exploiting functional simplifications, we achieve an accuracy comparable to state-of-the-art algorithms that typically require expensive computing devices and infrastructures. The advantage of monitoring streamflow velocity in situ with a lightweight and cost-effective embedded processing device is threefold. First, it circumvents the need for wideband internet connections, which are expensive and impractical in remote environments. Second, it massively reduces the overall energy consumption, bandwidth and deployment cost. Third, when monitoring more than one river section, processing “at the very edge” of the system efficiency improves scalability by a large margin, compared to offload solutions based on remote or cloud processing. Therefore, enabling streamflow velocity monitoring in situ with low-cost embedded devices would foster the widespread diffusion of gauge cameras even in developing countries where appropriate infrastructure might be not available or too expensive.


Sign in / Sign up

Export Citation Format

Share Document