scholarly journals Anti-proliferation of Melanoma Cells and Immune Stimulation by the Cyanobacterial Indole-alkaloid Scytonemin

Fine Focus ◽  
2021 ◽  
Vol 7 (1) ◽  
pp. 54-63
Author(s):  
Jadon Evans ◽  
Aaron Jones ◽  
Elliott Blumenthal ◽  
Tanya Soule

Under the stress of ultraviolet radiation some cyanobacteria synthesize scytonemin, a protective pigment against DNA photodamage. In addition to photoprotection, scytonemin has been shown to have an anti-proliferative effect on various types of malignant cells. In this study the effect of scytonemin on melanoma and spleen cells was assessed both in vitro using tissue cultures and in vivo in mice models. Melanoma and spleen cells were exposed to 0.08 to 10 μM of scytonemin, and cell proliferation was measured using tritiated thymidine uptake. The data suggest that scytonemin acts as an inhibitor for melanoma cells in a concentration-dependent manner while enhancing the proliferation of spleen cells, suggesting that it can potentially augment the immune response. Furthermore, mice injected with melanoma cells and scytonemin produced fewer tumors than mice that did not receive scytonemin, although the data were not significant. This study adds to the growing body of research that scytonemin may be beneficial as a future anticancer agent to prevent tumor cell growth.

2019 ◽  
Vol 26 (7) ◽  
pp. 494-501 ◽  
Author(s):  
Sameer Suresh Bhagyawant ◽  
Dakshita Tanaji Narvekar ◽  
Neha Gupta ◽  
Amita Bhadkaria ◽  
Ajay Kumar Gautam ◽  
...  

Background: Diabetes and hypertension are the major health concern and alleged to be of epidemic proportions. This has made it a numero uno subject at various levels of investigation. Glucosidase inhibitor provides the reasonable option in treatment of Diabetes Mellitus (DM) as it specifically targets post prandial hyperglycemia. The Angiotensin Converting Enzyme (ACE) plays an important role in hypertension. Therefore, inhibition of ACE in treatment of elevated blood pressure attracts special interest of the scientific community. Chickpea is a food legume and seeds contain carbohydrate binding protein- a lectin. Some of the biological properties of this lectin hitherto been elucidated. Methods: Purified by ion exchange chromatography, chickpea lectin was tested for its in vitro antioxidant, ACE-I inhibitory and anti-diabetic characteristic. Results: Lectin shows a characteristic improvement over the synthetic drugs like acarbose (oral anti-diabetic drug) and captopril (standard antihypertensive drug) when, their IC50 values are compared. Lectin significantly inhibited α-glucosidase and α-amylase in a concentration dependent manner with IC50 values of 85.41 ± 1.21 ҝg/ml and 65.05 ± 1.2 µg/ml compared to acarbose having IC50 70.20 ± 0.47 value of µg/ml and 50.52 ± 1.01 µg/ml respectively. β-Carotene bleaching assay showed antioxidant activity of lectin (72.3%) to be as active as Butylated Hydroxylanisole (BHA). In addition, lectin demonstrated inhibition against ACE-I with IC50 value of 57.43 ± 1.20 µg/ml compared to captopril. Conclusion: Lectin demonstrated its antioxidant character, ACE-I inhibition and significantly inhibitory for α-glucosidase and α-amylase seems to qualify as an anti-hyperglycemic therapeutic molecule. The biological effects of chickpea lectin display potential for reducing the parameters of medically debilitating conditions. These characteristics however needs to be established under in vivo systems too viz. animals through to humans.


Nutrients ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 123
Author(s):  
Natalia K. Kordulewska ◽  
Justyna Topa ◽  
Małgorzata Tańska ◽  
Anna Cieślińska ◽  
Ewa Fiedorowicz ◽  
...  

Lipopolysaccharydes (LPS) are responsible for the intestinal inflammatory reaction, as they may disrupt tight junctions and induce cytokines (CKs) secretion. Osthole has a wide spectrum of pharmacological effects, thus its anti-inflammatory potential in the LPS-treated Caco-2 cell line as well as in Caco-2/THP-1 and Caco-2/macrophages co-cultures was investigated. In brief, Caco-2 cells and co-cultures were incubated with LPS to induce an inflammatory reaction, after which osthole (150–450 ng/mL) was applied to reduce this effect. After 24 h, the level of secreted CKs and changes in gene expression were examined. LPS significantly increased the levels of IL-1β, -6, -8, and TNF-α, while osthole reduced this effect in a concentration-dependent manner, with the most significant decrease when a 450 ng/mL dose was applied (p < 0.0001). A similar trend was observed in changes in gene expression, with the significant osthole efficiency at a concentration of 450 ng/μL for IL1R1 and COX-2 (p < 0.01) and 300 ng/μL for NF-κB (p < 0.001). Osthole increased Caco-2 monolayer permeability, thus if it would ever be considered as a potential drug for minimizing intestinal inflammatory symptoms, its safety should be confirmed in extended in vitro and in vivo studies.


2021 ◽  
Author(s):  
Jun Sun ◽  
Wei Wu ◽  
Xiaofeng Tang ◽  
Feifei Zhang ◽  
Cheng Ju ◽  
...  

Background: WT161, as a selective HDAC6 inhibitor, has been shown to play anti-tumor effects on several kinds of cancers. The aim of this study is to explore the roles of WT161 in osteosarcoma and its underlying mechanisms. Methods: The anti-proliferative effect of WT161 on osteosarcoma cells was examined using MTT assay and colony formation assay. Cell apoptosis was analyzed using flow cytometer. The synergistic effect was evaluated by isobologram analysis using CompuSyn software. The osteosarcoma xenograft models were established to evaluate the anti-proliferative effect of WT161 in vivo. Results: WT161 suppressed the cell growth and induced apoptosis of osteosarcoma cells in a dose- and time-dependent manner. Mechanistically, we found that WT161 treatment obviously increased the protein level of PTEN and decreased the phosphorylation level of AKT. More importantly, WT161 show synergistic inhibition with 5-FU on osteosarcoma cells in vitro and in vivo. Conclusions: These results indicate that WT161 inhibits the growth of osteosarcoma through PTEN and has a synergistic efficiency with 5-FU.


Author(s):  
Mohammad Reza Shiran ◽  
Elham Mahmoudian ◽  
Abolghasem Ajami ◽  
Seyed Mostafa Hosseini ◽  
Ayjamal Khojasteh ◽  
...  

Abstract Objectives Angiogenesis is the most important challenge in breast cancer treatment. Recently, scientists become interesting in rare natural products and intensive researches was performed to identify their pharmacological profile. Auraptene shows helpful effects such as cancer chemo-preventive, anti-inflammatory, anti-oxidant, immuno-modulatory. In this regard, we investigated the anti-angiogenesis effect of Auraptene in in-vitro and in-vivo model of breast cancer. Methods In this study, 4T, MDA-MB-231 and HUVEC cell lines were used. The proliferation study was done by MTT assay. For tube formation assay, 250 matrigel, 1 × 104 HUVEC treated with Auraptene, 20 ng/mL EGF, 20 ng/mL bFGF and 20 ng/mL VEGF were used. Gene expression of important gene related to angiogenesis in animal model of breast cancer was investigated by Real-time PCR. Protein expression of VCAM-1 and TNFR-1 gene related to angiogenesis in animal model of breast cancer was investigated by western-blot. Results Auraptene treatment led to reduction in cell viability of MDA-MB-231 in a concentration-dependent manner. Also, we observed change in the number of tubes or branches formed by cells incubated with 40 and 80 μM Auraptene. Auraptene effect the gene expression of important gene related to angiogenesis (VEGF, VEGFR2, COX2, IFNɣ). Moreover, the western blot data exhibited that Auraptene effect the protein expression of VCAM-1 and TNFR-1. Conclusions Overall, this study shows that Auraptene significantly suppressed angiogenesis via down-regulation of VEGF, VEGFR2, VCAM-1, TNFR-1, COX-2 and up-regulation of IFNγ.


2020 ◽  
Vol 48 (02) ◽  
pp. 341-356
Author(s):  
Chiu-Mei Lin ◽  
Wei-Jen Fang ◽  
Bao-Wei Wang ◽  
Chun-Ming Pan ◽  
Su-Kiat Chua ◽  
...  

MicroRNA 145 (miR-145) is a critical modulator of cardiovascular diseases. The downregulation of myocardial miR-145 is followed by an increase in disabled-2 (Dab2) expression in cardiomyocytes. (-)-epigallocatechin gallate (EGCG) is a flavonoid that has been evaluated extensively due to its diverse pharmacological properties including anti-inflammatory effects. The aim of this study was to investigate the cardioprotective effects of EGCG under hypoxia-induced stress in vitro and in vivo. The hypoxic insult led to the suppression of miR-145 expression in cultured rat cardiomyocytes in a concentration-dependent manner. Western blotting and real-time PCR were performed. In rat myocardial infarction study, in situ hybridization, and immunofluorescent analyses were adopted. The western blot and real-time PCR data revealed that hypoxic stress with 2.5% O2 suppressed the expression of miR-145 and Wnt3a/[Formula: see text]-catenin in cultured rat cardiomyocytes but augmented Dab2. Treatment with EGCG attenuated Dab2 expression, but increased Wnt3a and [Formula: see text]-catenin in hypoxic cultured cardiomyocytes. Following in vivo myocardial infarction (MI) study, the data revealed the myocardial infarct area reduced by 48.5%, 44.6%, and 48.5% in EGCG (50[Formula: see text]mg/kg) or miR-145 dominant or Dab2 siRNA groups after myocardial infarction for 28 days, respectively. This study demonstrated that EGCG increased miR-145, Wnt3a, and [Formula: see text]-catenin expression but attenuated Dab2 expression. Moreover, EGCG ameliorated myocardial ischemia in vivo. The novel suppressive effect was mediated through the miR-145 and Dab2/Wnt3a/[Formula: see text]-catenin pathways.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 397
Author(s):  
Yoo-Kyung Song ◽  
Jin-Ha Yoon ◽  
Jong Kyu Woo ◽  
Ju-Hee Kang ◽  
Kyeong-Ryoon Lee ◽  
...  

The potential inhibitory effect of quercetin, a major plant flavonol, on breast cancer resistance protein (BCRP) activity was investigated in this study. The presence of quercetin significantly increased the cellular accumulation and associated cytotoxicity of the BCRP substrate mitoxantrone in human cervical cancer cells (HeLa cells) in a concentration-dependent manner. The transcellular efflux of prazosin, a stereotypical BCRP substrate, was also significantly reduced in the presence of quercetin in a bidirectional transport assay using human BCRP-overexpressing cells; further kinetic analysis revealed IC50 and Ki values of 4.22 and 3.91 μM, respectively. Moreover, pretreatment with 10 mg/kg quercetin in rats led to a 1.8-fold and 1.5-fold increase in the AUC8h (i.e., 44.5 ± 11.8 min∙μg/mL vs. 25.7 ± 9.98 min∙μg/mL, p < 0.05) and Cmax (i.e., 179 ± 23.0 ng/mL vs. 122 ± 23.2 ng/mL, p < 0.05) of orally administered sulfasalazine, respectively. Collectively, these results provide evidence that quercetin acts as an in vivo as well as in vitro inhibitor of BCRP. Considering the high dietary intake of quercetin as well as its consumption as a dietary supplement, issuing a caution regarding its food–drug interactions should be considered.


1994 ◽  
Vol 14 (8) ◽  
pp. 5360-5370 ◽  
Author(s):  
M E Kraus ◽  
J T Lis

B52 is a Drosophila melanogaster protein that plays a role in general and alternative splicing in vitro. It is homologous to the human splicing factor ASF/SF2 which is essential for an early step(s) in spliceosome assembly in vitro and also regulates 5' and 3' alternative splice site choice in a concentration-dependent manner. In vitro, B52 can function as both a general splicing factor and a regulator of 5' alternative splice site choice. Its activity in vivo, however, is largely uncharacterized. In this study, we have further characterized B52 in vivo. Using Western blot (immunoblot) analysis and whole-mount immunofluorescence, we demonstrate that B52 is widely expressed throughout development, although some developmental stages and tissues appear to have higher B52 levels than others do. In particular, B52 accumulates in ovaries, where it is packaged into the developing egg and is localized to nuclei by the late blastoderm stage of embryonic development. We also overexpressed this protein in transgenic flies in a variety of developmental and tissue-specific patterns to examine the effects of altering the concentration of this splicing factor in vivo. We show that, in many cell types, changing the concentration of B52 adversely affects the development of the organism. We discuss the significance of these observations with regard to previous in vitro results.


2010 ◽  
Vol 38 (06) ◽  
pp. 1093-1106 ◽  
Author(s):  
Xing-Tai Li ◽  
Hong-Cheng Li ◽  
Chun-Bin Li ◽  
De-Qiang Dou ◽  
Ming-Bo Gao

Cordyceps militaris (L.) Link is an entomopathogenic fungus parasitic to Lepidoptera larvae, and is widely used as a folk tonic or invigorant for longevity in China. Although C. militaris has been used in traditional Chinese medicine for millennia, there is still a lack convincing evidence for its anti-aging activities. This study was performed to investigate the effects of polysaccharides from cultivated fruiting bodies of C. militaris (CMP) on mitochondrial injury, antioxidation and anti-aging activity. Fruiting bodies of C. militaris were cultivated artificially under optimized conditions. The spectrophotometric method was used to measure thiobarbituric acid reactive substances (TBARS), mitochondrial swelling, and activities of scavenging superoxide anions in vitro. D-galactose (100 mg/kg/day) was injected subcutaneously into back of the neck of mice for 7 weeks to induce an aging model. The effects of CMP on the activities of catalase (CAT), surperoxide dismutase (SOD), glutathione peroxidase (GPx) and anti-hydroxyl radicals were assayed in vivo using commercial monitoring kits. The results showed that CMP could inhibit mitochondrial injury and swelling induced by Fe2+ -L-Cysteine in a concentration- dependent manner and it also had a significant superoxide anion scavenging effect. Moreover, the activities of CAT, SOD, GPx and anti-hydroxyl radicals in mice liver were increased significantly by CMP. These results indicate that CMP protects mitochondria by scavenging reactive oxygen species (ROS), inhibiting mitochondrial swelling, and increasing the activities of antioxidases. Therefore, CMP may have pharmaceutical values for mitochondrial protection and anti-aging. CMP was the major bioactive component in C. militaris.


Author(s):  
Pollyana Ribeiro Castro ◽  
Lucas Felipe Fernandes Bittencourt ◽  
Sébastien Larochelle ◽  
Silvia Passos Andrade ◽  
Charles Reay Mackay ◽  
...  

Butyrate is a short-chain fatty acid (SCFA) derived from microbiota and is involved in a range of cell processes in a concentration-dependent manner. Low concentrations of sodium butyrate (NaBu) was shown to be proangiogenic. However, the mechanisms associated with these effects are not yet fully known. Here, we investigated the contribution of the SCFA receptor GPR43 in the proangiogenic effects of local treatment with NaBu and its effects on matrix remodeling using the sponge-induced fibrovascular tissue model in mice lacking the GPR43 gene (GPR43-KO) and the wild-type (WT). We demonstrated that NaBu (0.2 mM intraimplant) treatment enhanced the neovascularization process, blood flow, and VEGF levels in a GPR43-dependent manner in the implants. Moreover, NaBu was able to modulate matrix remodeling aspects of the granulation tissue such as proteoglycans production, collagen deposition and α-SMA expression in vivo, besides to increase TGF-b1 levels in the fibrovascular tissue, in a GPR43-dependent manner. Interestingly, NaBu directly stimulated L929 murine fibroblasts migration, and TGF-β1 and collagen production in vitro. GPR43 was found to be expressed in human dermal fibroblasts, myofibroblasts and endothelial cells. Overall, our findings evidence that the metabolite-sensing receptor GPR43 contributes to the effects of low dose of NaBu in inducing angiogenesis and matrix remodeling during granulation tissue formation. These data provide important insights for the proposition of new therapeutic approaches based on NaBu, beyond the highly explored intestinal, anti-inflammatory, and anti-cancer purposes, as a local treatment to improve tissue repair, particularly, by modulating granulation tissue components.


2020 ◽  
Vol 7 (9) ◽  
pp. 200441
Author(s):  
Thomas Stahnke ◽  
Beata Gajda-Deryło ◽  
Anselm G. Jünemann ◽  
Oliver Stachs ◽  
Katharina A. Sterenczak ◽  
...  

To elucidate and to inhibit post-surgical fibrotic processes after trabeculectomy in glaucoma therapy, we measured gene expression in a fibrotic cell culture model, based on transforming growth factor TGF-β induction in primary human tenon fibroblasts (hTFs), and used Connectivity Map (CMap) data for drug repositioning. We found that specific molecular mechanisms behind fibrosis are the upregulation of actins, the downregulation of CD34, and the upregulation of inflammatory cytokines such as IL6, IL11 and BMP6 . The macrolide antibiotic Josamycin (JM) reverses these molecular mechanisms according to data from the CMap, and we thus tested JM as an inhibitor of fibrosis. JM was first tested for its toxic effects on hTFs, where it showed no influence on cell viability, but inhibited hTF proliferation in a concentration-dependent manner. We then demonstrated that JM suppresses the synthesis of extracellular matrix (ECM) components. In hTFs stimulated with TGF-β1, JM specifically inhibited α-smooth muslce actin expression, suggesting that it inhibits the transformation of fibroblasts into fibrotic myofibroblasts. In addition, a decrease of components of the ECM such as fibronectin, which is involved in in vivo scarring, was observed. We conclude that JM may be a promising candidate for the treatment of fibrosis after glaucoma filtration surgery or drainage device implantation in vivo .


Sign in / Sign up

Export Citation Format

Share Document