scholarly journals KINETICS OF THE PROCESS OF DRYING THE PASTE OF TITANIUM DIOXIDE IN AN ORIGINAL DRYING VORTEX APPARATUS AND OBTAINING A FINE POWDER TIO2

Author(s):  
V.M. Marchevskii ◽  
Ya.V. Grobovenko

The authors of the article justified the physical model of the drying process of titanium dioxide paste and the drying of TiO2 fine powder to a residual moisture content of 0.3%, on the basis of which a mathematical model of the drying process is developed. The result of solving the mathematical model is the kinetic parameters of the drying process, with the help of which the drying apparatus of the vortex type was designed, designed and manufactured. The results of the simulation were verified by experimental studies of the drying and drying of TiO2 paste, and experimental graphical dependences of the drying rate and product temperature on the drying time were obtained. The obtained dependences are analyzed and the necessary initial parameters of the coolant are established, which allow increasing the drying rate and reducing energy costs for the drying process. As a result of the experiments, the fine powder of titanium dioxide fits the requirements of state standards and possesses the necessary mechanical and consumer properties. Bibl. 10, Fig. 7.

2012 ◽  
Vol 2 (1) ◽  
pp. 14-20
Author(s):  
Yuwana Yuwana

Experiment on catfish drying employing ‘Teko Bersayap’ solar dryer was conducted. The result of the experiment indicated that the dryer was able to increase ambient temperature up to 44% and decrease ambient relative humidity up to 103%. Fish drying process followed equations : KAu = 74,94 e-0,03t for unsplitted fish and KAb = 79,25 e-0,09t for splitted fish, where KAu = moisture content of unsplitted fish (%), KAb = moisture content of splitted fish (%), t = drying time. Drying of unsplitted fish finished in 43.995 hours while drying of split fish completed in 15.29 hours. Splitting the fish increased 2,877 times drying rate.


Author(s):  
A. O. Fagunwa ◽  
O. A. Aregbesola ◽  
M. O. Faborode

Mathematical modeling of drying process is a complex procedure that should be carefully done. Moreso, model for solar drying, which is a unique method of drying due to constant fluctuation in the climatic conditions, requires complete integration of the complex phenomena that are involved for accurate prediction of moisture content and drying rate. A mathematical model was developed from heat and mass balance equation considering the physical and thermal properties of the grain, meteorological factors and convective heat transfer during solar drying of grains. The data obtained from the model was compared with experimental results obtained using a solar dryer to dry five selected grains – cowpea, soyabean, groundnut, maize and sorghum at airflow rates of 0.22 m/s, 0.76 m/s and 0.94 m/s. The results from statistical analysis and regression analyses used to compare the results showed that the model is adequate in predicting the moisture content and drying rate of the selected grains as well as other agricultural products with closer physical and thermal properties.


Author(s):  
Yu.F. Snezhkin ◽  
V.М. Paziuk ◽  
Zh.O. Petrova

The mathematical processing of experimental data obtained during the drying of spherical form of capillary-porous materials on a convective drying bench allows us to determine the influence of various factors on the process. The main factors influencing the kinetics of drying of capillary-porous materials of spherical shape are the temperature and velocity of the heat carrier, as well as the initial moisture content of the material. For each factor, the variation levels corresponding to the optimal conditions for conducting experimental studies with low-temperature drying conditions are recommended. For a mathematical description of the duration of drying of capillary-porous materials, we use an orthogonal composite plan of the second order. As a result, the proposed mathematical model of the process obtained regression equations and the response surface of the duration of drying of capillary-porous materials of spherical shape. The obtained regression equations of the drying time give a detailed description of the influence of both individual and joint actions of factors, the significance of these parameters is determined by the corresponding coefficients according to Student's criterion. Also, the adequacy of the mathematical model according to Fisher's criterion, which corresponds to the real object, is checked. The construction of the response surfaces of the drying time of capillary-porous materials indicates the nature of the effect of these factors in the given range of variation.


Author(s):  
Anatolii Spirin ◽  
Ihor Tverdokhlib ◽  
Ihor Kupchuk ◽  
Julia Poberezhets

Shortage of quality feed significantly slows down the production of livestock products in Ukraine. One of the ways to overcome the crisis in the production of feed is the use of new high-energy feed, including the products of fractional processing of alfalfa. For the successful implementation of the skin type of feed, including the products of fractional processing of alfalfa, there should be an opportunity to create their reserves, feed should be canned for successful storage. The best way to preserve food is to dry it. Energy efficiency of the drying process, ie loss of nutrients, energy costs for the implementation of the process, etc. It depends on the method and its mode parameters. In this case, it is proposed to carry out the drying process in a thick layer of alfalfa pulp by active ventilation with heated air. To determine the rational parameters of the process, such as layer thickness, air flow, drying time and patents to conduct theoretical and experimental studies. Alfalfa pulp, like most wet plant materials, belongs to the capillary-porous bodies. The drying blood of these bodies has two distinct periods: constant and decreasing speeds (or the first and second drying periods). The moisture content of the material at which the transition from the first to the second period is called critical. As a result of theoretical research has obtained a dependence that determines the total duration of the drying process on a number of parameters, including initial, critical, equilibrium and final moisture content. To determine these coefficients, as well as to check the adequacy of the obtained dependence, experimental studies were conducted on a special installation. The main elements of the experimental setup are a fan, electric heater, containers with mass, shut-off, control and measuring equipment. According to the results of experimental research, graphical dependences of drying speed and process duration on regime parameters are obtained.


2020 ◽  
Vol 64 (4) ◽  
pp. 555-561
Author(s):  
Iryna Huzova

The drying process, which is the limiting and power-consuming stage of candied fruits production, has been considered. The heat-transfer processes during the filtration drying of pumpkin candied fruit have been investigated. The filtration drying of finished candied fruits (80 °C) is the filtration of a hot heat agent (100 °C) in the direction of "candied layers – grate". As a result of experimental studies, the kinetic curves of candied fruits drying, as well as the dependence of temperature on the height of the candied fruit layer, were obtained. The experimental data confirm the zonal mechanism of the filtration drying.It was found that during the filtration drying, the upper layers, which reached their final moisture content, overheat and accumulate a considerable amount of unused energy. It was proved that the accumulated energy can be used for drying the lower layers with simultaneous cooling the upper ones. On the basis of the equation of non-stationary heat-mass transfer, the amount of heat is calculated, which will be sufficient to dry the bottom layer. The stoppage time of hot heat agent supply and start of cold heat agent supply were determined. Filtration of cold heat agent through a layer of candied fruits makes it possible to cool the layer, reduce drying time and energy costs for the process.Dried candied fruits have sufficient shelf life, good taste and organoleptic properties.


Author(s):  
Aurelija Kemzūraitė ◽  
Algirdas Raila ◽  
Kristina Bimbiraitė ◽  
Olga Kornyšova ◽  
Audrius Maruška

Medicinal herbs after their harvesting participate in heat exchange with the environmental, as does each organic and hygroscopic material. Drying helps to conserve the medicinal raw material with the maximal preservation of its quality. The present investigation deals with the influence of the surrounding air factors (temperature and relative humidity) on drying intensity. The study object was aboveground part of hyssop (Hyssopus officinalis L.), i.e. Hyssopi herba was used as medicinal raw material. The aim of the study was to offer a mathematical model of time‐related medicinal herbs moisture dynamics and to show its qualitative agreement with the physical model of diffusion as well as to determine the optimum ventilation intensity of medicinal herbs. Drying of Hyssopi herba using active ventilation was investigated. Ventilation intensity and the parameters of the drying agent influenced the processes of moisture dynamics, the total drying time and the quality of Hyssopi herba. The basic prerequisites of the drying process have been analysed. A mathematical model of moisture dynamics has been proposed and used to show the dependence of theoretical moisture dynamics on ventilation velocity. The obtained experimental values of moisture content dynamics during the drying of Hyssopi herba have been shown to agree with theoretical dependences. Santrauka Vaistiniai augalai, kaip ir kiekviena organinė higroskopinė medžiaga, dalyvauja šilumos mainų procese su aplinka. Džiovinant siekiama konservuoti vaistinius augalus iki reikiamo drėgnio, kiek įmanoma išsaugant jų kokybę. Nagrinėta aplinkos oro veiksnių (temperatūros ir santykinio oro drėgnio) įtaka džiovinimo intensyvumui. Tyrimams naudota antžeminė vaistinio isopo (Hyssopus officinalis L.) dalis, t. y. vaistinė augalinė žaliava – isopų žolė (Hyssopi herba). Tyrimų tikslas – sudaryti drėgmės kitimo per tam tikrą laiką matematinį modelį, taikant gautą difuzijos sprendinį, bei nustatyti optimalų ventiliavimo intensyvumą. Tirtas Hyssopi herba džiovinimo taikant aktyviąją ventiliaciją procesas. Išanalizavus pagrindines džiovinimo sąlygas, sudarytas drėgmės kitimo priklausomybės nuo ventiliavimo intensyvumo, matematinis modelis. Ventiliavimo intensyvumas ir džiovinimo agento parametrai turėjo įtakos drėgmės mainų procesams, džiovinimo trukmei ir vaistinės augalinės žaliavos kokybei. Gauti drėgnio kitimo džiovinant Hyssopi herba rezultatai patvirtino, kad teorinės priklausomybės kokybiškai atitinka tiriamąjį procesą. Резюме Лекарственные растения, как и всякий органический гигроскопический материал, участвуют в процессе теплообмена с окружающей средой. С помощью сушки требуется консервировать лекарственные растения до нужной влажности, максимально сохраняя их качествo. Исследовалось влияние температуры и относительной влажности окружающего воздуха на интенсивность сушки. Объект исследования – наземная часть лекарственного иссопа (Hyssopus officinalis L.), т.е. лекарственное сырьё Hyssopi herba. Целью исследования было создать математическую модель изменения влажности с течением времени, применяя полученное решение диффузии, и определить оптимальную интенсивность вентиляции. Процесс сушки Hyssopi herba исследовался способом активной вентиляции. Различные параметры интенсивности вентиляции и сушильной среды влияли на процесс влагообмена, продолжительность сушки и качество лекарственного сырья. Произведен качественный анализ основных предпосылок процесса сушки. Предложена математическая модель изменения влажности, и на ее основе получена теоретическая зависимость изменения влажности от интенсивности вентиляции. Полученные результаты подтвердили соответствие между теоретической моделью и экспериментальными данными.


2020 ◽  
Vol 44 ◽  
Author(s):  
Valdiney Cambuy Siqueira ◽  
Rafael Araújo Leite ◽  
Geraldo Acácio Mabasso ◽  
Elton Aparecido Siqueira Martins ◽  
Wellytton Darci Quequeto ◽  
...  

ABSTRACT Buckwheat has become important in the food sector as its flour does not contain gluten. Since buckwheat is a relatively new crop in the agricultural environment, there is little information available regarding its processing. Drying is one of the most important post-harvest stages of buckwheat. The aim of the present study was to describe the drying process of buckwheat grains. Buckwheat grains with a moisture content of 0.41 ± 0.01 (dry basis, d.b.) were harvested, followed by drying in an experimental dryer at the temperatures of 40, 50, 60, 70, and 80 °C, at an air speed of 0.8 m s-1. The drying rate was determined, and the mathematical models generally employed to describe the drying process of several agricultural products were fitted to the experimentally obtained data. Model selection was based on the Gauss-Newton non-linear regression method and was complemented by Akaike Information Criterion and Schwarz’s Bayesian Information Criterion. It was concluded that the drying rate increased with an increase in temperature and decreased with an increase in drying time. It is recommended to use the Midilli model to represent the drying kinetics of buckwheat grains at the temperatures of 40, 60, and 70 °C, while the Approximation of diffusion model is recommended for the temperatures of 50 and 80 °C. The magnitudes of effective diffusion coefficients ranged from 1.8990 × 10-11 m2 s-1 to 17.8831 × 10-11 m2 s-1. The activation energy required to initiate the drying process was determined to be 49.75 kJ mol-1.


Author(s):  
Rosalam Sarbatly ◽  
Tracy Wong ◽  
Awang Bono ◽  
Duduku Krishnaiah

This study reveals the drying kinetics, specific heat and enthalpy of seaweed dried in the convective air drier. Comparison between convective hot air and sun drying process was also studied. At 50°C air temperature with 23.45 percent relative humidity and 1.55 ms-1air flow rate, it has been found that the moisture removal required 4 hours to reach moisture content of 19.66 percent wet basis with its drying rate at 0.28 x 10-3 kg water h-1. The data of drying rate showed that the drying process took place in the falling rate period. The specific heat and initial enthalpy were found to be 1.3842 kJkg-1°C-1 and 1672.69 kJkg-1, respectively. It was observed that the drying kinetics, specific heat, and enthalpy values vary significantly as functions of air temperature which seem to have more effect when compared to air flow rate and seaweed loading. Hence, the best method for seaweed drying was to use convective air system rather than sun drying because it required less drying time and has better drying efficiency.


2013 ◽  
Vol 423-426 ◽  
pp. 746-749
Author(s):  
Samad Khani Moghanaki ◽  
Behnam Khoshandam ◽  
Mohammad Hosein Mirhaj

Convectional dryerswork at high temperature and usually lead to loss of quality for sensitivebiomaterial products (especially in nutrition). In this way the researchersfound the microwave power more effective and suitable for drying processes. Someof microwave drying advantages include the following: short drying time, highquality of product, low operating temperature, flexibility in producing widerange of products and easier process controlling. The article calculated themoisture content and drying rate during drying process. Microwave power, holdertray speed, dimension of samples, irradiation time were considered; under theseconditions experiments were done and the results show that microwave method hasmore advantages as comparing with convectional methods.


In this work experimentally investigated the drying rate of Cherry on the freeze-dryer (FD) and FD with infrared pretreatment (IR), and compared the quality characteristics of the cherry after rehydration. Results of experimental studies was determined that, the use of IR pre-treatment on the FD was much more effective. The use of IR waves showed that the drying time of cherries with IR pre-treatment is shorter than without pre-treatment. Especially, the application of IR pretreatment before freeze-drying, allows you to get quality products, and provides to reduce energy consumption by 15-17%.


Sign in / Sign up

Export Citation Format

Share Document