scholarly journals Analisis Terjadinya Arus Netral Pada Trafo Distribusi 160 kVA

Author(s):  
Arfita Yuana Dewi ◽  
Asnal Effendi ◽  
Fahody M Syafar

The Power distribution in a 3-phase system, cannot be separated from the flow of current in the neutral of the transformer, which will cause power losses (losses) where current flows into the neutral conductor and losses that flow into the neutral conductor. This study was conducted to determine the causes and magnitude of power losses that occur due to the occurrence of neutral current flowing in the neutral conductor in a 160kVA distribution transformer. The research location taken is the Distribution Transformer (G187 T) which is located on Jl. Hos Cokroaminoto Wisma Ombilin where load imbalances often occur. From the results, it can be seen that if the neutral wire has a cross-sectional size of 50 mm2, the current that passes through the neutral wire is 6.4% for the day and for the cross-sectional size of the wire is 70 mm2, it can reduce the power flowing to the neutral by a percentage of 4.77%. for the daytime. Efficiency value that occurs is greater at night that is 94.87% while for the day it is 93.44%. For the distribution of each - each phase, especially the S phase, so that it can be balanced because the power supplied to the S phase is too small. We recommend that the current flowing in the neutral wire must be channeled to the ground so that the current flowing in the neutral wire becomes zero.

Author(s):  
Cok Gede Indra Partha

The design of balancing the load current on three-phase systems using a microcontroller ATMega 2560 is a tool that serves to reduce the power loss. Power loss due to the load current unbalance the current flows in the neutral phase on three-phase systems. Current flows in the neutral phase distribution transformer into a detriment to PT. PLN (Persero) for the power lost to the earth and can not be used by consumers. So that it will balanced the load current to reduce the value of neutral current. The tool is also equipped with a monitoring system that displays current magnitude of each phase including the neutral phase.The methods in making this tool is divided into two parts: first, the design of hardware consist of designing electronic components which are used by the current sensor circuits, relay, LCD (Liquid Crystal Display) etc. Second, the design of software is a tool listing program procedure including the monitoring program displays the current of each phase on LCD using the Arduino IDE. SCT013-030 current sensor used, the output of the current sensor is connected to the pin ADC (Analog to Digital Converter) microcontroller ATMega 2560. Then microcontroller process the data and generate a current value displayed on the LCD. The other result of processing current value is a command to enable or disable the relay that connects three-phase resource with single-phase loads.The result of the test design of balancing load current on three-phase system using a microcontroller ATMega 2560 succeed balancing the load current by moving the channel load of sequence number load the smallest connected to the phase with the current biggest load toward a phase that has a load current smallest when neutral current exceeds the limit is permitted. In this situation, the neutral current will not be possible be zero. In fact, the maximum current value for the neutral phase for PT. PLN (Persero) 50 amperes calibrated to 1 ampere and is used as a limit on this prototype. If the neutral current on LCD monitor exceeds 1 ampere, then there will be balancing of the load current. The current sensor measurement results are displayed on a monitoring approach measurement result using pliers ampere.


2013 ◽  
Vol 5 (1) ◽  
pp. 1-8
Author(s):  
Surfa Yondri ◽  
Tri Artono ◽  
Hengki Purnama Sari

Load balancing is load balancing activities in each phase distribution transformers are not balanced, the goal to reduce the magnitude of the neutral current transformer because inequality between phases. This activity was done by measuring each phase transformer load, calculate the average current in each phase, and shifted the burden of heavily loaded phase to phase which has a lot fewer burdens. Load balancing is done on a regular basis every 6 months. PT. PLN (Persero) Rayon Bukittinggi perform load balancing on the distribution transformer substation 100 KVA Distribution Tabek Gadang Tower 2 times on Wednesday, 15th May 2013 at 19:30 pm and Thursday, 16 May 2013 at 19:30 pm. First, by moving the load phase T to phase S at 18 A. Second, by moving the burden from phase to phase R T at 9 A. and load phase T to S phase by 11 A. load balancing distribution transformers 100 KVA Substation Tabek Gadang Tower is near parity with the transformer neutral currents in 14.18 A.


2019 ◽  
Vol 4 (1) ◽  
Author(s):  
Dian Eka Putra ◽  
Randi Kusniriansya

ABSTRAKKetidak seimbangan beban yang terjadi SUTR terletak etidakteraturan pemasangan sambungan rumah (SR) baik satu fasa maupun tiga fasa pada saluran udara tegangan rendah mengakibatkan beban trasformator distribusi LI 146 menjadi tidak merata, hal ini dikarenakan adanya penumpukan beban pada salah satu fasa, sehingga beban saluran tidak seimbang. Ketidakseimbangan beban menyebabkan menyebabkan terjadinya lossesdaya listrik pada jaringan penghantar netral.Diawali dengan pengukuran setiap fasa SUTR maka didapat lapangan fasa R yang terbesar dengan Arus 41 Amperedan fasa T Arus terkecil sebesar 12.2 A, akibat dari perbedaan yang besar antar fasa minimbulakan arus sebesar 35,5 A. Maka diperlukananalisa perbaikan dilapangan untuk mengurangi besarnya arus netral dan loses yang terjadi maka dilakukan pemerataan beban dengan jalan perbaikan sambungan konduktordan pemindahan disetiap penghantar fasa pada beban berupa sambungan rumah (SR) dan beban lainya lampu penerangan jalan, dari jaringan fasa yang besar ke penghantar fasa yang lebih kecil.penelitian inididapatnilai besar arus netral dan rugi-rugi (losses)penghantar netral sebelum dan setelah dilakukan pemerataan beban saluran udara tegangan rendah (SUTR). Pengukuran dan perhitungan dilakukan pada luar waktu beban puncaktransformator distribusi pada gardu distribusi LI 146 di PT PLN (Persero) ULP Muara Beliti.Berdasarkan hasil perhitungan besar arus netral sebelum dilakukan pemerataan beban yaitu 35,5 A dan rugi-rugi yang terjadi akibat arus netral sebesar 2,265 kW. Namun setelah dilakukan pemerataan beban, besar arus netral berkurang menjadi 24,2 Adikarenakan arus netral berkurang maka rugi-rugi pada penghantar netral ikut berkurang menjadi 0,97 kW. Hal ini berarti bahwa program pemerataan beban dapat meminimalisir besar arus dan rugi-rugi daya (losses) yang timbul disaluran penghantar netral transformator distribusi LI 146.Kata kunci : Ketidakseimbangan beban, Transformator LI 146, Pemerataan beban saluran.ABSTRACThe load imbalance that occurs in SUTR lies in the irregularity of the installation of house connections (SR) both one phase and three phases in the low voltage air ducts causing the distribution load transformer LI 146 to be uneven, this is due to a buildup of load on one phase, so that the load is not balanced. The unbalance of load causes electrical power losses in the neutral conductor network. Beginning with the measurement of each phase of the SUTR, the largest phase R is obtained with a current of 41 Amperedan and T phase The smallest current of 12.2 A, due to a large difference between the phase minimbulakan currents of 35.5 A. Therefore, it is necessary to analyze the improvement in the field to reduce the amount of neutral current and loses that occur then the load equalization is carried out by repairing conductor connections and displacement in each phase conductor at loads in the form of house connections (SR) and other loads of street lighting, from large phase networks to conductors smaller phase. this research can be a large value of neutral current and neutral conductor losses before and after the equalization of low voltage air line loads (SUTR). Measurements and calculations are carried out outside the load time of the distribution transformer at the LI 146 distribution substation at PT PLN (Persero) ULP Muara Beliti. Based on the results of the calculation of neutral currents before equalization of the load ie 35.5 A and the losses incurred due to neutral currents of 2,265 kW. However, after the load is equalized, the neutral current is reduced to 24.2 Adik. Since the neutral current is reduced, the losses on neutral conductors also decrease to 0.97 kW. This means that the load equalization program can minimize the amount of current and power losses that arise in the distribution channel neutral distribution transformer LI 146.Keyword :  Load imbalance, Transformer LI 146, Channel load equalization


Author(s):  
Aleksej Vladimirovich Melikov

The article describes the schemes of the radial power distribution system of the bulk system on board big ships. Today, when the ship power plants have great capacity, it is found preferable to use a four-wire three-phase system that has a distributed neutral and is not connected to the ground, in which the linear voltage can be easily utilized. The main distribution network of medium voltage can be of a simple radial type with substations or additional distribution switchboards. The advantages of a simple radial scheme on board a large vessel include providing selective protection and using digital automation. The weak points are the impressive amount of protective and switching appliances, high cost, significant power losses, length of wires, and threat to the reliability of the vessel due to the main switchboard failure. A There is presented a multi-part radial chart, in which the number of circuits going from the main switchboard and devices in it is significantly reduced. This chart is considered more suitable for medium-size power plants on large vessels. The calculation was carried out at a steady state of the radial network, the sections and wires of power lines were determined. Power losses in transformers and power supplied to substation bus-lines have been calculated. Before selecting the wires it was recommended to calculate the current flowing through the circuit. The ship power supply with a bridge ring scheme has been considered. In the event of a failure, only a part of the generators and a half of energy will be available. There has been given a conditional division of the power systems with a bridge ring circuit on board into three main parts. A diagram of the high-voltage power supply from the shore is shown. One of the main advantages of this technology is environmentally friendly nature of electricity produced by power plants on the coast, compared to the ship diesel engines running on burner fuel. This technology reduces pollution and improves air quality in port areas.


MIND Journal ◽  
2021 ◽  
Vol 6 (1) ◽  
pp. 118-131
Author(s):  
FARIZ GHILYATS IRFAN ◽  
NASRUN HARIYANTO

AbstrakDalam sebuah satu rangkaian kereta biasanya terdiri dari penggerak utama lokomotif, kereta penumpang, kereta makan, dan kereta pembangkit. Dengan banyaknya fasilitas dan alat-alat kelistrikan dalam gerbong-gerbong tersebut dapat memberikan dampak penurunan terhadap kualitas daya listrik yang mengalir pada sistem distribusi aliran daya. Penelitian ini bertujuan untuk mengetahui kapasitas nilai circuit breaker, ukuran penampang kabel,  tegangan jatuh, dan rugi-rugi daya, serta perbandingangannya dengan hasil simulasi pada software ETAP 12.6. Kapasitas circuit breaker dan ukuran penampang kabel yang diperhitungkan mendapatkan rating circuit breaker dengan arus berkisar dari 800 hingga 80 Ampere dan ukuran kabel yang digunakan sebesar 120 mm2. Hasil nilai drop voltage yang didapat dimulai dari 1,02 Volt hingga 5,08 Volt. Untuk nilai rugi-rugi daya yang didapat dimulai dari dari 0,01 kW hingga 0,11 kW.Kata kunci: Aliran Beban, ETAP, Circuit Breaker, Drop Voltage, Rugi-rugi Daya.AbstractA train usually consists of several carrieges: a prime mover locomotive, passenger carriage, dining carriage, and generator carriage. With that many facilities and installed electrical equipments the quality of the electric power flowing in the trains’s power distribution system may be decresed. This study aims to determine the capacity of the circuit breaker, the cable’s cross section size, the voltage drop, and power losses, as well as the comparison with the simulation results by using ETAP software. The circuit breaker capacity and cable’s cross-sectional size are calculated. From the calculations, we obtain the rating value for the circuit breaker, which is ranging from 800 to 80 Ampere. As for the cable’s corss sectional we obtain 120 mm2. With these values, the resulting voltage drop is from 1.02 Volts to 5.08 Volts. As for the resulting power loss, its value is ranging from 0.01 kW to 0.11 kW.Keywords: Load Flow, ETAP, Circuit Breaker, Voltage Drop, Power Loss.  


Author(s):  
Jong Hak Lee ◽  
Jong Eun Kim ◽  
Chang Su Park ◽  
Nam Il Kim ◽  
Jang Won Moon ◽  
...  

Abstract In this work, a slightly unetched gate hard mask failure was analyzed by nano probing. Although unetched hard mask failures are commonly detected from the cross sectional view with FIB or FIB-TEM and planar view with the voltage contrast, in this case of the very slightly unetched hard mask, it was difficult to find the defects within the failed area by physical analysis methods. FIB is useful due to its function of milling and checking from the one region to another region within the suspected area, but the defect, located under contact was very tiny. So, it could not be detected in the tilted-view of the FIB. However, the state of the failure could be understood from the electrical analysis using a nano probe due to its ability to probe contact nodes across the fail area. Among the transistors in the fail area, one transistor’s characteristics showed higher leakage current and lower ON current than expected. After physical analysis, slightly remained hard mask was detected by TEM. Chemical processing was followed to determine the gate electrode (WSi2) connection to tungsten contact. It was also proven that when gate is floated, more leakage current flows compared to the state that the zero voltage is applied to the gate. This was not verified by circuit simulation due to the floating nodes.


2019 ◽  
Vol 18 (03n04) ◽  
pp. 1940030 ◽  
Author(s):  
A. I. Efimova ◽  
E. A. Lipkova ◽  
K. A. Gonchar ◽  
A. A. Eliseev ◽  
V. Yu. Timoshenko

Free charge carrier concentration in arrays of silicon nanowires (SiNWs) with cross-sectional size of the order of 100[Formula: see text]nm was quantitatively studied by means of the infrared spectroscopy in an attenuated total reflection mode. SiNWs were formed on lightly-doped [Formula: see text]-type crystalline silicon substrates by metal-assisted chemical etching followed by additional doping through thermoactivated diffusion of boron at 900–1000∘C. The latter process was found to increase the concentration of free holes in SiNWs up to [Formula: see text][Formula: see text]cm[Formula: see text]. Potential applications of highly doped SiNWs in thermoelectric energy converters and infrared plasmonic devices are discussed.


Author(s):  
Francesco Rea ◽  
Francesco Amoroso ◽  
Rosario Pecora ◽  
Maria Chiara Noviello ◽  
Maurizio Arena

In the framework of Clean Sky 2 Airgreen 2 (REG-IADP) European research project, a novel multifunctional morphing flap technology was investigated to improve the aerodynamic performances of the next Turboprop regional aircraft (90 passengers) along its flight mission. The proposed true-scale device (5 meters span with a mean chord of 0.6 meters) is conceived to replace and enhance conventional Fowler flap with new functionalities. Three different functions were enabled: overall airfoil camber morphing up to +30° (mode 1), +10°/−10° (upwards/downwards) deflections of the flap tip segment (mode 2), flap tip “segmented” twist of ±5° along the outer flap span (mode 3). Morphing mode 1 is supposed to be activated during take-off and landing only to enhance aircraft high-lift performances and steeper initial climb and descent. Thanks to this function, more airfoil shapes are available at each flap setting and therefore a dramatic simplification of the flap deployment system may be implemented. Morphing modes 2 and 3 are enabled in cruise and off-design flight conditions to improve wing aerodynamic efficiency. The novel structural concept of the three-modal morphing Fowler flap (3MMF) was designed according to the challenges posed by real wing installation issues. The proposed concept consists of a multi-box arrangement activated by segmented ribs with embedded inner mechanisms to realize the transition from the baseline configuration to different target aero-shapes while withstanding the aerodynamic loads. Lightweight and compact actuating leverages driven by electromechanical motors were properly synthesized to comply with stringent requirements for real aircraft implementation: minimum actuating torque, minimum number of motors, reduced weight, and available design space. The methodology for the kinematic design of the inner mechanisms is based on a building block approach where the instant center analysis tool is used to preliminary select the locations of the hinges’ leverages. The final geometry of the inner mechanisms is optimized to maximize the mechanical advantage as well as to provide the kinematic performances required by the three different morphing modes. The load-path was evaluated, and the cross-sectional size of leverages was subsequently optimized. Finally, actuating torques predicted by instant center analysis were compared to the calculated values from finite element analysis. The structural sizing process of the multi-box arrangement was carried out considering elementary methods, and results were compared with finite element simulations.


2020 ◽  
Vol 14 (4) ◽  
pp. 480-487
Author(s):  
Vedran Mrzljak ◽  
Sandi Baressi Šegota ◽  
Hrvoje Meštrić ◽  
Zlatan Car

The paper presents an analysis of two steam turbine operation regimes - regime with all steam extractions opened (base process) and regime with all steam extractions closed. Closing of all steam extractions significantly increases turbine real developed power for 5215.88 kW and increases turbine energy and exergy losses with simultaneous decrease of turbine energy and exergy efficiencies for more than 2%. First extracted steam mass flow rate has a dominant influence on turbine power losses (in comparison to turbine maximum power when all of steam extractions are closed). Cumulative power losses caused by steam mass flow rate extractions are the highest in the fourth turbine segment and equal to 1687.82 kW.


Sign in / Sign up

Export Citation Format

Share Document