scholarly journals Extension of Winding Function Theory for Modeling and Diagnosis of Partial Demagnetization Fault in PMSM Drive

Author(s):  
Zakaria Gherabi ◽  
Noureddine Benouzza ◽  
Azeddine Bendiabdellah ◽  
Djilali Toumi

This paper proposes the development of a new mathematical model dedicated to the diagnostic of the partial Demagnetization Fault (DF) in Permanent Magnet Synchronous Motor (PMSM). To do this, an extension of the Modified Winding Function Approach (MWFA) is proposed to accurately take into account the air gap asymmetry caused by the Demagnetization Fault (DF) in the PMSM inductances calculation. The calculated inductances are then used in the magnetically coupled electrical circuit model to simulate the PMSM behavior in the different operating modes. Finally, a diagnostic method based on the stator current spectral analysis is used to highlight the PMSM stator current spectral content in the various operating modes (with and without Demagnetization Fault).

2017 ◽  
Vol 29 (2) ◽  
pp. 394-422 ◽  
Author(s):  
Marta Favali ◽  
Giovanna Citti ◽  
Alessandro Sarti

This letter presents a mathematical model of figure-ground articulation that takes into account both local and global gestalt laws and is compatible with the functional architecture of the primary visual cortex (V1). The local gestalt law of good continuation is described by means of suitable connectivity kernels that are derived from Lie group theory and quantitatively compared with long-range connectivity in V1. Global gestalt constraints are then introduced in terms of spectral analysis of a connectivity matrix derived from these kernels. This analysis performs grouping of local features and individuates perceptual units with the highest salience. Numerical simulations are performed, and results are obtained by applying the technique to a number of stimuli.


2018 ◽  
Vol 1 (2) ◽  
pp. 10-17
Author(s):  
A Kodryk ◽  
O Titenko ◽  
V Prysiazhniuk ◽  
S Semychaievskyi

The principle of construction and examples of implementation of the developed mathematical model of the smoke exhaust system designed for operational use in case of fire for the elimination of gas pollution and lowering the temperature in the premises. Estimated target features of the installation are based on existing experience, namely: expected aerodynamic airway resistance: 80 Pa and volumetric air mixture flow rate of 3.3 m3/s. The specified characteristics and parameters necessary for the design, or modernization of existing axial fans, and their choice for three operating modes: independent work, joint work with the supply of finely divided water, joint work with the foam generating plant. Simplifications were used in the development of a mathematical model: scheme of the design of the axial fan, which does not involve the presence of a guiding apparatus; it is assumed that the flow in the operating cavity of the pump is axially symmetric; it is assumed that the thermodynamic process taking place in the pump cavity is isothermal; simplified formula of the lifting factor and drag coefficient of the grid is used on the basis of known table data. The mathematical model takes into account: the dimensions of the smoke exhaust system, the number and size of the blades, the angle of attack of the blade, the frequency of rotation, the amount of aerodynamic resistance of the airway, the density and the amount of supply of finely divided water or foam. The examples of the implementation of the developed mathematical model of the smoke exhaust system are illustrated in the form of diagrams of the location of the working points (volume flow of air mixture, m3/s, pressure, Pa; power of the engine of the smoke exhaust system, W) at operation of a smoke exhaust system in the conditions of the average airway for the three above-mentioned operating modes.


2009 ◽  
Vol 22 (2) ◽  
pp. 183-195
Author(s):  
Ján Vittek ◽  
Vladimir Vavrús ◽  
Jozef Buday ◽  
Jozef Kuchta

The paper presents design and verification of Forced Dynamics Control of an actuator with linear permanent magnet synchronous motor. This control method is a relatively new one and offers an accurate realization of a dynamic speed response, which can be selected for given application by the user. In addition to this, the angle between stator current vector and moving part flux vector is maintained mutually perpendicular as it is under conventional vector control. To achieve prescribed speed response derived control law requires estimation of an external force, which is obtained from the set of observers. The first observer works in pseudo-sliding mode and observes speed of moving part while the second one has filtering effect for elimination of the previous one chattering. The overall control system is verified by simulations and experimentally. Preliminary experiments confirmed that the moving part speed response follows the prescribed one fairly closely.


2021 ◽  
Vol 54 (2) ◽  
pp. 345-354
Author(s):  
Fayçal Mehedi ◽  
Habib Benbouhenni ◽  
Lazhari Nezli ◽  
Djamel Boudana

In this work, the direct torque control (DTC) is applied to the five-phase permanent magnet synchronous motor (FP-PMSM). The DTC method based on classical space vector pulse width modulation (SVPWM) is a common solution used to overcome traditional problems; such as stator flux ripple, electromagnetic torque ripple and gives more total harmonic distortion (THD) of the stator current. The actual paper is based on improving the performance of DTC-SVPWM by using the feedforward neural networks (FNNs) instead of the proportional-integral (PI) regulators and hysteresis comparators (HCs) of the conventional SVPWM strategy. This algorithm can solve the traditional PI regulators and HCs problems which are represented in responses dynamic and reduce the torque ripple, flux ripple, and the THD of stator current of FP-PMSM drives. The proposed strategy was tested in different tests with simulation using Matlab software.


2021 ◽  
Vol 2057 (1) ◽  
pp. 012076
Author(s):  
V A Zhigarev ◽  
A V Minakov ◽  
D V Guzei ◽  
M I Pryazhnikov ◽  
V I Panteleev

Abstract The paper presents a comprehensive mathematical model of a diesel-generator units with a valve-inductor generator. The calculated data obtained using this model allows optimizing the operation of fuel injectors and adjust the injection characteristics. The electromagnetic part of the model allows taking into account the power losses and efficiency of the generator, calculating the phase windings and their connection schemes, methods for setting the voltage or current of any shape that feeds the windings of the valve-inductor generator, as well as the characteristics of the rotor, stator, and winding materials to obtain the most effective operation parameters of the engine in various operating modes as part of the generator unit.


2021 ◽  
Vol 4 ◽  
pp. 40-44
Author(s):  
Gumirov A. ◽  

Purpose. The article describes methodology for conducting research on parameters of compression foam cooling during its delivery through hose-pump systems depending on the operating modes of the foam generating installation. The impact of mass consumption of compression foam on its cooling at low temperatures has been examined. The application of a mathematical model of air-foam mixture movement in hose-pump systems at different temperature modes has been substantiated. Methods. Empirical method-experiment has been used for research. Findings. A number of experiments have been carried out to confirm the developed model of compression foam moving in hose-pump systems at different temperature modes. A mobile installation for generating and delivering compression foam has been used as the object of the research. Inaccuracy in calculations obtained with the help of a mathematical model in comparison with the experimental data is 10% which makes a possible to claim that the model of compression foam moving in hose-pump systems at different temperature modes has been chosen properly. Research application field. According to the obtained data, it is possible to plan means and forces of fire units for extinguishing fires using compression foam at low temperatures. Conclusions. The developed mathematical model of compression foam movement during its delivery through hose-pump systems is confirmed by experimental data. The dependence of mass consumption impact on compression foam cooling when it is delivered through fire hoses at low temperatures has been obtained experimentally.


Sign in / Sign up

Export Citation Format

Share Document