scholarly journals Inherent Parallelism and Speedup Estimation of Sequential Programs

2021 ◽  
Vol 5 (2) ◽  
pp. 62-77
Author(s):  
Sesha Kalyur ◽  
Nagaraja G.S

Although several automated Parallel Conversion solutions are available, very few have attempted, to provide proper estimates of the available Inherent Parallelism and expected Parallel Speedup. CALIPER which is the outcome of this research work is a parallel performance estimation technology that can fill this void. High level language structures such as Functions, Loops, Conditions, etc which ease program development, can be a hindrance for effective performance analysis. We refer to these program structures as the Program Shape. As a preparatory step, CALIPER attempts to remove these shape related hindrances, an activity we refer to as Program Shape Flattening. Programs are also characterized by dependences that exist between different instructions and impose an upper limit on the parallel conversion gains. For parallel estimation, we first group instructions that share dependences, and add them to a class we refer to as Dependence Class or Parallel Class. While instructions belonging to a class run sequentially, the classes themselves run in parallel. Parallel runtime, is now the runtime of the class that runs the longest. We report performance estimates of parallel conversion as two metrics. The inherent parallelism in the program is reported, as Maximum Available Parallelism (MAP) and the speedup after conversion as Speedup After Parallelization (SAP).

Author(s):  
Rachna Singh ◽  
Arvind Rajawat

FPGAs have been used as a target platform because they have increasingly interesting in system design and due to the rapid technological progress ever larger devices are commercially affordable. These trends make FPGAs an alternative in application areas where extensive data processing plays an important role. Consequently, the desire emerges for early performance estimation in order to quantify the FPGA approach. A mathematical model has been presented that estimates the maximum number of LUTs consumed by the hardware synthesized for different FPGAs using LLVM.. The motivation behind this research work is to design an area modeling approach for FPGA based implementation at an early stage of design. The equation based area estimation model permits immediate and accurate estimation of resources. Two important criteria used to judge the quality of the results were estimation accuracy and runtime. Experimental results show that estimation error is in the range of 1.33% to 7.26% for Spartan 3E, 1.6% to 5.63% for Virtex-2pro and 2.3% to 6.02% for Virtex-5.


2016 ◽  
Vol 256 ◽  
pp. 319-327 ◽  
Author(s):  
Mario Rosso ◽  
Ildiko Peter ◽  
Ivano Gattelli

During the last decades under the enthusiastic and competent guidance of Mr Chiarmetta SSM processes attained in Italy at Stampal Spa (Torino) an unquestionable high level of industrial development with the production of large numbers of high performance automotive parts, like variety of suspension support, engine suspension mounts, steering knuckle, front suspension wheel, arm and rear axle. Among the most highlighted findings SSM processes demonstrated their capability to reduce the existing gap between casting and forging, moreover during such a processes there are the opportunity to better control the defect level.Purpose of this paper is to highlight the research work and the SSM industrial production attained and developed by Mr G.L. Chiarmetta, as well as to give an overview concerning some alternative methods for the production of enhanced performance light alloys components for critical industrial applications and to present an analysis of a new rheocasting process suitable for the manufacturing of high performance industrial components.


2021 ◽  
Author(s):  
Karthik K ◽  
Sudarson Jena ◽  
Venu Gopal T

Abstract A Multiprocessor is a system with at least two processing units sharing access to memory. The principle goal of utilizing a multiprocessor is to process the undertakings all the while and support the system’s performance. An Interconnection Network interfaces the various handling units and enormously impacts the exhibition of the whole framework. Interconnection Networks, also known as Multi-stage Interconnection Networks, are node-to-node links in which each node may be a single processor or a group of processors. These links transfer information from one processor to the next or from the processor to the memory, allowing the task to be isolated and measured equally. Hypercube systems are a kind of system geography used to interconnect various processors with memory modules and precisely course the information. Hypercube systems comprise of 2n nodes. Any Hypercube can be thought of as a graph with nodes and edges, where a node represents a processing unit and an edge represents a connection between the processors to transmit. Degree, Speed, Node coverage, Connectivity, Diameter, Reliability, Packet loss, Network cost, and so on are some of the different system scales that can be used to measure the performance of Interconnection Networks. A portion of the variations of Hypercube Interconnection Networks include Hypercube Network, Folded Hypercube Network, Multiple Reduced Hypercube Network, Multiply Twisted Cube, Recursive Circulant, Exchanged Crossed Cube Network, Half Hypercube Network, and so forth. This work assesses the performing capability of different variations of Hypercube Interconnection Networks. A group of properties is recognized and a weight metric is structured utilizing the distinguished properties to assess the performance exhibition. Utilizing this weight metric, the performance of considered variations of Hypercube Interconnection Networks is evaluated and summed up to recognize the effective variant. A compact survey of a portion of the variations of Hypercube systems, geographies, execution measurements, and assessment of the presentation are examined in this paper. Degree and Diameter are considered to ascertain the Network cost. On the off chance that Network Cost is considered as the measurement to assess the exhibition, Multiple Reduced Hypercube stands ideal with its lower cost. Notwithstanding it, on the off chance that we think about some other properties/ scales/metrics to assess the performance, any variant other than MRH may show considerably more ideal execution. The considered properties probably won't be ideally adequate to assess the effective performance of Hypercube variations in all respects. On the off chance that a sensibly decent number of properties are utilized to assess the presentation, a proficient variation of Hypercube Interconnection Network can be distinguished for a wide scope of uses. This is the inspiration to do this research work.


2021 ◽  
Vol 31 (02) ◽  
pp. 2150020
Author(s):  
Chunyan Gao ◽  
Fangqi Chen

This study develops a general model of delayed p53 regulatory network in the DNA damage response by introducing microRNA 192-mediated positive feedback loop based on the existing research work. Through theoretical analysis and numerical simulation, we find that the delay as a bifurcation parameter can drive the p53-Mdm2 module to undergo a supercritical Hopf bifurcation, thereby producing oscillation behavior. Moreover, we demonstrate how the positive feedback loop formed by p53* and microRNA 192 (miR-192) with the feature of double-negative regulation produces oscillations. Further, a comparison is given to demonstrate that microRNA 192-mediated positive feedback loop affects the robustness of system oscillations. In addition, we show that ataxia telangiectasia mutated kinase (ATM), once activated by DNA damage, makes p53* undergo two Hopf bifurcations. These results reveal that both time delay and miR-192 play tumor suppressing roles by promoting p53 oscillation or high level expression, which will provide a perspective for promoting the development of anti-cancer drugs by targeting miR-192 and time delay.


Author(s):  
V. T. Kryvosheyev ◽  
V. V. Makogon ◽  
Ye. Z. Ivanova

Economic hardship in Ukraine during the years of independence led to a sharp reduction of exploration work on oil and gas, a drop in hydrocarbon production, a decrease in inventories and a sharp collapse of research work to ensure the growth of hydrocarbon reserves.The hydrocarbon potential of various sources of Ukrainian subsoil is quite powerful and can provide future energy independence of the country. Potential hydrocarbon resources in traditional traps of various types are exhausted by only 25 %. Ukraine has recently experienced so-called “shale gas boom”. The experience of extraction of shale gas in desert areas of the United States can not be repeated in densely populated Ukraine in the absence of such powerful shale strata, resource base, necessary infrastructure, own technologies and techniques and economic, environmental and social risks.Taking into account the fuel and energy problems of the state, we constantly throughout the years of independence oriented the oil and gas industry and the authorities on the active use of our own reserves and opportunities for accelerated opening of new oil and gas fields.The results of geological exploration work in the old oil and gas basins at the high level of their study indicate that deposits in non-structural traps dominate among open deposits.A complex of sequence-stratigraphical, lithology-facies and lithology-paleogeographical studies is being successfully used to forecast undeformational traps in well-studied oil and gas bearing basin of the Ukraine – the Dniprovsko-Donetsky basin. The authors predict wide development of stratigraphic, lithologic, tectonic and combined traps in terrigenous sediments of Tournaisian and Visean age, reef-carbonate massifs of the lower Tournaisian, lower and middle Visean age and others. They should become the basis for exploration of oil and gas fields for the near and medium term and open the second breath of the basin.


Author(s):  
Rajkumar Sah ◽  
Santpal Dixit

Background: Livestock genetic diversity studies focus on their within and diversity, breed history, adaptive variations, ancestral information, site of domestication and parentage testing and assess the genetic uniformity, admixture or subdivision, inbreeding, or introgression in the population which is helpful in breed formation and their sustainable utilization.Methods: The present research work was conducted during the year 2016-17 at National Bureau of Animal Genetics Resources, Karnal-132001. STR data of 25 markers on 1237 random samples of 27 goat populations was used for analysis. The genetic diversity analysis of new population viz: Narayanpatna, Raighar, Kalahandi, Malkangiri of Odisha state and Rohilkhandi (UK) and their association studies with other Indian goat breeds was performed.Result: It was found that used markers are highly polymorphic- and the studied breeds/population showed great diversity and distributed mostly on the basis of physio-geographical condition and type of production but among new populations diversity was least which might be due to exchange of animal for breeding purposes. The studied new goat populations were well differentiated from other goat breeds which might be due to physio-geographical condition and breeding practices, so these may be considered as separate breeds/populations. In conclusion, the results showed high level of conserved genetic diversity in the Indian goat breeds. The smaller and isolated new population showed less diversity and a higher inbreeding level as compared to registered breeds.


Author(s):  
A. Hergt ◽  
U. Siller

The development of modern axial compressors has already reached a high level. Therefore an enlargement of the design space by means of new or advanced aerodynamic methods is necessary in order to achieve further enhancements of performance and efficiency. The tandem arrangement of profiles in a transonic compressor blade row is such a method. For an efficient industrial application the knowledge of the fundamental design principles is needed. This paper presents the recent research work on transonic compressor tandem profiles at DLR Institute of Propulsion Technology. It deals with the fundamental description of the operation principles of a modern transonic compressor tandem cascade. By considering these principles and based on an optimization database with over 1200 members design recommendations are developed.


2019 ◽  
Vol 53 (1-2) ◽  
pp. 3-17
Author(s):  
A Anandh ◽  
K Mala ◽  
R Suresh Babu

Nowadays, user expects image retrieval systems using a large database as an active research area for the investigators. Generally, content-based image retrieval system retrieves the images based on the low-level features, high-level features, or the combination of both. Content-based image retrieval results can be improved by considering various features like directionality, contrast, coarseness, busyness, local binary pattern, and local tetra pattern with modified binary wavelet transform. In this research work, appropriate features are identified, applied and results are validated against existing systems. Modified binary wavelet transform is a modified form of binary wavelet transform and this methodology produced more similar retrieval images. The proposed system also combines the interactive feedback to retrieve the user expected results by addressing the issues of semantic gap. The quantitative evaluations such as average retrieval rate, false image acceptation ratio, and false image rejection ratio are evaluated to ensure the user expected results of the system. In addition to that, precision and recall are evaluated from the proposed system against the existing system results. When compared with the existing content-based image retrieval methods, the proposed approach provides better retrieval accuracy.


2019 ◽  
Vol 9 (6) ◽  
pp. 1329-1336
Author(s):  
G. Brindha ◽  
G. Rohini

In this research work M × N, DNA micro array is utilized with the help of Quantum optimization of evolutionary algorithm for accurate performance estimation in the system configuration provides high throughput using clinical prognosis application based on image processing. In an existing system the droplet-manipulation method based on a "cross-referencing" method that is used for "row" and "columns" to access electrodes. In our research work proposed Advanced Digital Micro Fluidic Biochip (ADMFB) process is a synthesis configuration of linear way dynamic routing segment used faster execution span related to the previous bio chip module. These techniques are minimizing the consumption of power and area. Experimental outputs shows the improvement in the static power, dynamic power and delay while comparing the previous research work and proposed research work.


Sign in / Sign up

Export Citation Format

Share Document