scholarly journals Laboratory and Commercial Synthesized Zinc Oxide Nanoparticles Adsorption onto Coconut Husk: Characterization, Isotherm, Kinetic, and Thermodynamic Studies

2020 ◽  
Vol 11 (1) ◽  
pp. 7871-7889

The accelerating application of zinc oxide nanoparticles (ZnO-NPs) has called for attention to their potential environmental and human health risks. This work aimed to investigate the sorption efficiency of laboratory and commercial synthesized nanocrystalline zinc oxide onto raw coconut husk in a batch adsorption study. Characterization of samples was performed by employing spectroscopies techniques such as X-ray Diffraction Spectroscopy, Field Emission Scanning Electron Microscopy, Transmission Electron Spectroscopy, Fourier transform IR Spectroscopy, and Brunauer–Emmett–Teller. A spherical shaped nanocrystalline ZnO with a mean crystallite and particle size of 14.7 nm and 24 nm by XRD and TEM was synthesized as compared to the commercial ZnO-NPs of size < 50 nm. The maximum percentage removal of 88% (0.13 mg/g) and 90% (0.16 mg/g) for laboratory synthesized and commercial ZnO-NPs respectively was recorded at an optimum contact time of 80 minutes. The data also indicated 2.0 g sorbent mass and pH of 8 as the optimum conditions for maximum percentage removal of these nanoparticles. Both Langmuir and Freundlich models fitted best for laboratory synthesized ZnO-NPs with a maximum capacity of 0.797 mg/g, whereas Langmuir isotherm model alone with a maximum capacity of 0.710 mg/g fitted well for commercial ZnO-NPs. The n-value from the Freundlich model, as well as separation factor (RL) were greater than unity suggesting a favorable adsorption process. The study obeyed pseudo-second-order, which was exothermic with a high degree of freedom of sorbent-sorbate interaction. The results suggested that coconut husk is potentially scalable for removing ZnO-NPs from wastewater.

2020 ◽  
Vol 16 (2) ◽  
pp. 137-152
Author(s):  
Mariana Buşilă ◽  
Aurel Tăbăcaru ◽  
Viorica Muşsat ◽  
Bogdan Ştefan Vasile ◽  
Ionela Andreea Neaşu ◽  
...  

Surface modification of zinc oxide nanoparticles (ZnO NPs) is a strategy to tune their biocompatibility. Herein we report on the synthesis of a series of fluorescent ZnO NPs modified with 2–10% (3-glycidyloxypropyl)trimethoxysilane (GPTMS) to investigate the fluorescence properties and to explore their applications in microbiology and biomedicine. The obtained ZnO NPs were characterized by X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM) and Fourier transform infrared spectroscopy (FTIR). Size reduction occurred from ca. 13 nm in unmodified ZnO to 3–4 nm in silane-modified samples and fluorescence spectra showed size-dependent variation of the photoemission bands' intensity. The antibacterial and cytotoxic activities were investigated on Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria, and in ovarian (A2780) and prostate (PC3) cancer cells by tetrazolium/formazan-based methods. The antibacterial effect was higher for E. coli than S. aureus, while the cytotoxic activity was similar for both cancer cells and varied with the particle size. Cell death by apoptosis, and/or necrosis versus autophagy, were explored by flow cytometry using an Annexin V based-method and transmission electron microscopy (TEM). The main mechanism of ZnO NPs toxicity may involve the generation of reactive oxygen species (ROS) and the induction of apoptosis or autophagy. This work revealed the potential utility of GPTMS-modified ZnO NPs in the treatment of bacterial infection and cancer.


2021 ◽  
Author(s):  
RAVI KUMAR YADAV ◽  
Narsingh Bahadur Singh ◽  
AJEY SINGH ◽  
VIJAYA YADAV ◽  
KM NIHARIKA ◽  
...  

Abstract The present work describes the bio-based synthesis (green) and characterization of Zinc oxide nanoparticles (ZnO NPs) using leaf extract of Tridax, the synthesized nanoparticles were used to study their beneficial effect in the growth and metabolism of Vigna radiata. Zinc oxide nanoparticles (ZnONP) were characterized using X-Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), High-Resolution Transmission Electron Microscopy (HR-TEM), and Ultraviolet–visible spectroscopy (UV–Vis spectra). Growth of V. radiata seedlings was measured in terms of shoot length (SL) and root length (RL) were treated 20 and 40 mg/L concentrations of green synthesized ZnO NPs, and constant concentration (50 mg/L) of PbCl2. These studies have shown the effect of ZnO NPs in the stimulation of growth as well as physiological and biochemical parameters. Vigna seedlings showed positive effects depending upon the increasing concentrations of ZnO NPs. This study suggests that ZnO NPs can be effectively used to ameliorate the toxicity of Pb in Vigna plants.


2019 ◽  
Vol 20 (7) ◽  
pp. 542-550 ◽  
Author(s):  
Nahla S. El-Shenawy ◽  
Reham Z. Hamza ◽  
Fawziah A. Al-Salmi ◽  
Rasha A. Al-Eisa

Background: Zinc oxide nanoparticles (ZnO NPs) are robustly used biomedicine. Moreover, no study has been conducted to explore the consequence of green synthesis of ZnO NPs with Camellia sinensis (green tea extract, GTE) on kidneys of rats treated with monosodium glutamate (MSG). Methods: Therefore, the objective of the research was designed to explore the possible defensive effect of GTE/ZnO NPs against MSG-induced renal stress investigated at redox and histopathological points. Results: The levels of urea and creatinine increased as the effect of a high dose of MSG, in addition, the myeloperoxidase and xanthine oxidase activates were elevated significantly with the high dose of MSG. The levels of non-enzymatic antioxidants (uric acid, glutathione, and thiol) were decreased sharply in MSG-treated rats as compared to the normal group. Conclusion: The data displayed that GTE/ZnO NPs reduced the effects of MSG significantly by reduction of the level peroxidation and enhancement intracellular antioxidant. These biochemical findings were supported by histopathology evaluation, which showed minor morphological changes in the kidneys of rats.


Author(s):  
Mohammad Faizan ◽  
Fangyuan Yu ◽  
Chen Chen ◽  
Ahmad Faraz ◽  
Shamsul Hayat

: Abiotic stresses arising from atmosphere change belie plant growth and yield, leading to food reduction. The cultivation of a large number of crops in the contaminated environment is a main concern of environmentalists in the present time. To get food safety, a highly developed nanotechnology is a useful tool for promoting food production and assuring sustainability. Nanotechnology helps to better production in agriculture by promoting the efficiency of inputs and reducing relevant losses. This review examines the research performed in the past to show how zinc oxide nanoparticles (ZnO-NPs) are influencing the negative effects of abiotic stresses. Application of ZnO-NPs is one of the most effectual options for considerable enhancement of agricultural yield globally under stressful conditions. ZnO-NPs can transform the agricultural and food industry with the help of several innovative tools in reversing oxidative stress symptoms induced by abiotic stresses. In addition, the effect of ZnO-NPs on physiological, biochemical, and antioxidative activities in various plants have also been examined properly. This review summarizes the current understanding and the future possibilities of plant-ZnO-NPs research.


Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 713
Author(s):  
Nina Melnikova ◽  
Alexander Knyazev ◽  
Viktor Nikolskiy ◽  
Peter Peretyagin ◽  
Kseniia Belyaeva ◽  
...  

A design of new nanocomposites of bacterial cellulose (BC) and betulin diphosphate (BDP) pre-impregnated into the surface of zinc oxide nanoparticles (ZnO NPs) for the production of wound dressings is proposed. The sizes of crystalline BC and ZnO NPs (5–25%) corresponded to 5–6 nm and 10–18 nm, respectively (powder X-ray diffractometry (PXRD), Fourier-infrared (FTIR), ultraviolet (UV), atomic absorption (AAS) and photoluminescence (PL) spectroscopies). The biological activity of the wound dressings “BC-ZnO NPs-BDP” was investigated in rats using a burn wound model. Morpho-histological studies have shown that more intensive healing was observed during treatment with hydrophilic nanocomposites than the oleophilic standard (ZnO NPs-BDP oleogel; p < 0.001). Treatment by both hydrophilic and lipophilic agents led to increases in antioxidant enzyme activity (superoxide dismutase (SOD), catalase) in erythrocytes and decreases in the malondialdehyde (MDA) concentration by 7, 10 and 21 days (p < 0.001). The microcirculation index was restored on the 3rd day after burn under treatment with BC-ZnO NPs-BDP wound dressings. The results of effective wound healing with BC-ZnO NPs-BDP nanocomposites can be explained by the synergistic effect of all nanocomposite components, which regulate oxygenation and microcirculation, reducing hypoxia and oxidative stress in a burn wound.


Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 1919
Author(s):  
Elsayim Rasha ◽  
AlOthman Monerah ◽  
Alkhulaifi Manal ◽  
Ali Rehab ◽  
Doud Mohammed ◽  
...  

Recently, concerns have been raised globally about antimicrobial resistance, the prevalence of which has increased significantly. Carbapenem-resistant Klebsiella pneumoniae (KPC) is considered one of the most common resistant bacteria, which has spread to ICUs in Saudi Arabia. This study was established to investigate the antibacterial activity of biosynthesized zinc oxide nanoparticles (ZnO-NPs) against KPC in vitro and in vivo. In this study, we used the aqueous extract of Acacia nilotica (L.) fruits to mediate the synthesis of ZnO-NPs. The nanoparticles produced were characterized by UV-vis spectroscopy, zetasizer and zeta potential analyses, X-ray diffraction (XRD) spectroscopy, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and transmission electron microscopy (TEM). The antimicrobial activity of ZnO-NPs against KPC was determined via the well diffusion method, and determining minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC), the results showed low MIC and MBC when compared with the MIC and MBC of Imipenem and Meropenem antibiotics. The results of in vitro analysis were supported by the results upon applying ZnO-NP ointment to promote wound closure of rats, which showed better wound healing than the results with imipenem ointment. The biosynthesized ZnO-NPs showed good potential for use against bacteria due to their small size, applicability, and low toxicity to human cells.


Author(s):  
Bushra H. Shnawa ◽  
Samir M. Hamad ◽  
Azeez A. Barzinjy ◽  
Payman A. Kareem ◽  
Mukhtar H. Ahmed

AbstractCystic echinococcosis is a public health problem in developing countries that practice sheep breeding extensively. In the current study, the protoscolicidal activity of biosynthesized zinc oxide nanoparticles (ZnO NPs) derived from Mentha longifolia L. leaf extracts was investigated. The resultant ZnO NPs were characterized by means of various analytical techniques, such as ultraviolet–visible (UV–Vis) spectrometry, Fourier transform infrared (FT-IR) spectrophotometry, X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX) analysis. The results showed that the ZnO NP had the highest scolicidal activity at 400 ppm concentration after 150 min of exposure time, showing 100% mortality rate. The treated protoscolices exhibited loss of viability with several morphological alterations. Hence, an easy and effective green synthesis of ZnO NPs, with efficient scolicidal potential, is reported in this study.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Pandiyan Amuthavalli ◽  
Jiang-Shiou Hwang ◽  
Hans-Uwe Dahms ◽  
Lan Wang ◽  
Jagannathan Anitha ◽  
...  

AbstractMicrobes or parasites spread vector-borne diseases by mosquitoes without being affected themselves. Insecticides used in vector control produce a substantial problem for human health. This study synthesized zinc oxide nanoparticles (ZnO NPs) using Lawsonia inermis L. and were characterized by UV–vis, FT-IR, SEM with EDX, and XRD analysis. Green synthesized ZnO NPs were highly toxic against Anopheles stephensi, whose lethal concentrations values ranged from 5.494 ppm (I instar), 6.801 ppm (II instar), 9.336 ppm (III instar), 10.736 ppm (IV instar), and 12.710 ppm (pupae) in contrast to L. inermis treatment. The predation efficiency of the teleost fish Gambusia affinis and the copepod Mesocyclops aspericornis against A. stephensi was not affected by exposure at sublethal doses of ZnO NPs. The predatory potency for G. affinis was 45 (I) and 25.83% (IV), copepod M. aspericornis was 40.66 (I) and 10.8% (IV) while in an ZnO NPs contaminated environment, the predation by the fish G. affinis was boosted to 71.33 and 34.25%, and predation of the copepod M. aspericornis was 60.35 and 16.75%, respectively. ZnO NPs inhibited the growth of several microbial pathogens including the bacteria (Escherichia coli and Bacillus subtilis) and the fungi (Alternaria alternate and Aspergillus flavus), respectively. ZnO NPs decreased the cell viability of Hep-G2 with IC50 value of 21.63 µg/mL (R2 = 0.942; P < 0.001) while the concentration increased from 1.88 to 30 µg/mL. These outcomes support the use of L. inermis mediated ZnO NPs for mosquito control and drug development.


Sign in / Sign up

Export Citation Format

Share Document