scholarly journals Research into phosphate mineral composition and waste phosphorite ore

2021 ◽  
Vol 15 (1) ◽  
pp. 96-102
Author(s):  
Andrii Proidak ◽  
Mykhailo Gasyk ◽  
Yurii Proidak

Purpose. Theoretical and experimental studies of chemical and mineral composition and the structure peculiarities of phosphorites from Ukrainian deposits to define the degree of their suitability for other industries. Methods. The ore chemical composition was determined by conventional (wet) analysis using standard certified chemical reagents. The mineral composition was studied on the scanning electron microscope equipped with the attachment for the energy-dispersive electron microprobe analysis (EMPA) with the software for calculating the chemical composition of the studied sample microvolume. The petrographic analysis was carried out by the traditional methods of microscopic section preparation with subsequent identification and description of the minerals. The microscopic study of the original ore samples aimed at their mineral composition determination was conducted on the Nu optical microscope (Germany) both in transmitted and reflected light. The thin and polished sections prepared using the standard technology were used as samples. In the laboratory environment, the phosphorites were subjected to magnetic dressing in magnetic fields with different intensity. The experiments in the weak field were modelled with the help of the magnetic analyzer while the experiments in the strong magnetic field were modelled on the rotor separator. The flotation dressing method was studied on the laboratory mechanical flotation machine. Findings. It was found that phosphate nodules are rounded mineral formations of irregular shape; they consist of sand bound with the yellow-brown phosphate cement. Ore useful substance is a phosphorus-bearing mineral that by the element chemical composition corresponds to fluorocarbon-hydroxyl-apatite with the dominant content of Ca (45.23%), P (15.67%), and B (27.87%). The results of the integrated petrographic study of the phosphorite samples from the ore body of “Peremoha” area are presented. Originality.The study has revealed that phosphorus-containing substance in the phosphorite samples is the mass that cements barren minerals (mainly quartz, glauconite, calcite and plagioclase). Practical implications. According to the phosphate content level, the phosphorites from Malokamyshevatske, Iziumske and Sinichino-Yaremovske deposits can be treated as minerals for ferrophosphorus smelting. Keywords: ferrophosphorus, ore substance, phosphorite, mineral varieties, petrography, apatite


Author(s):  
Maria Evgenievna Tsibizova

In the context of the organization of proper nutrition of the population of Russia, regardless of belonging to any physiological group, taking into account the eating behavior of a modern person, the research has been carried out to expand the range of fish pastes by modifying their recipes. The goal has been achieved by combining raw materials of different origins and reducing the mass fraction of table salt. Experimental studies were carried out to substantiate the recipe compositions of pastes based on grass carp meat, the optimal proportion of calcium-phosphate mineral supplements was defined, a comparative analysis of organoleptic indicators of quality, chemical composition and energy value of the obtained products was conducted. It has been stated that the introduction of 2.5% of phosphate-calcium food additives into paste recipes No. 4 and 5 did not adversely affect the organoleptic quality indicators. The pastes produced according to recipes No. 4 and No. 5, which include grass carp meat (48%), chicken liver (10%), vegetable components (17%), calcium-phosphate mineral supplement (2,5%) and flavoring substances, can be recommended for mass nutrition of the population of Russia. The ratio of these components provides the high organoleptic properties and improved nutritional value. The inclusion of fish pastes enriched with vegetable components, chicken by-products, phosphate-calcium mineral supplements, differing in chemical composition, in the diet allows balancing the diet for proteins, fats, amino acids, vitamins, macro- and micronutrients and preventing from eating disorders and, in the result, reducing morbidity of population in the Russian Federation.



Author(s):  
Robert M. Fisher

By 1940, a half dozen or so commercial or home-built transmission electron microscopes were in use for studies of the ultrastructure of matter. These operated at 30-60 kV and most pioneering microscopists were preoccupied with their search for electron transparent substrates to support dispersions of particulates or bacteria for TEM examination and did not contemplate studies of bulk materials. Metallurgist H. Mahl and other physical scientists, accustomed to examining etched, deformed or machined specimens by reflected light in the optical microscope, were also highly motivated to capitalize on the superior resolution of the electron microscope. Mahl originated several methods of preparing thin oxide or lacquer impressions of surfaces that were transparent in his 50 kV TEM. The utility of replication was recognized immediately and many variations on the theme, including two-step negative-positive replicas, soon appeared. Intense development of replica techniques slowed after 1955 but important advances still occur. The availability of 100 kV instruments, advent of thin film methods for metals and ceramics and microtoming of thin sections for biological specimens largely eliminated any need to resort to replicas.



Author(s):  
D. A. Petrochenkov

Fossils of marine reptiles are a new jewelry and ornamental material and collected in the Ulyanovsk region from the Upper Jurassic deposits. They consist of (wt. %): calcite — 52, apatite — 24 and pyrite — 23, and also gypsum presents. The contents of radioactive and carcinogenic elements are close to background. The original bone structure of reptiles is preserved. Apatite replaces the bone tissue of marine reptiles, forming a cellular framework. According to the chemical composition, apatite refers to fluorohydroxyapatite with an increased Sr content. The size of the crystals is finely-dispersed. Calcite and pyrite fill the central parts of the cells. Calcite crystals of isometric and elongated shape, 0,01—0,05 mm in size, form blocks up to 0,3 mm during intergrowth. Calcite fills thin, discontinuous veins along the contour of cells with a width of up to 0,03 mm. In calcite, among the impurity elements, there are (wt. %, on the average): Mg — 0,30, Mn — 0,39 and Fe — 0,96. Pyrite forms a dispersed impregnation in calcite and apatite, content of impurities is, wt. %: Ni — up to 0,96 and Cu — up to 0,24. On technological and decorative characteristics of fossils of sea reptiles of Ulyanovsk region are qualitative jewelry and ornamental materials of biomineral group, allowing to make a wide assortment of jewelry and souvenir products.



Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 653
Author(s):  
Nataša Imenšek ◽  
Vilma Sem ◽  
Mitja Kolar ◽  
Anton Ivančič ◽  
Janja Kristl

In view of growing requirements of the food industry regarding elderberries (genus Sambucus), a need to increase their productivity and improve their chemical composition has emerged. With this purpose in mind, numerous elderberry interspecific hybrids have been created. In the present work, the content of minerals in their crucial plant parts was studied. It was also investigated whether superior genotypes regarding the mineral composition of berries and inflorescences could be predicted at early stages of plant development. The results showed that elderberry leaves contained the highest amounts of Ca, Mg, Mn, Zn, and Sr, while K and P were predominant in fruit stalks. Fe and Al prevailed in roots and Cu in bark. Although berries showed lower mineral content compared to other plant parts, their mineral content is not negligible and could be comparable to other commonly consumed berries. Genotypes with a favorable mineral content of inflorescences and berries could be predicted on the basis of known mineral composition of their shoots and leaves. The study also indicates that S. nigra genotypes and the majority of interspecific hybrids analyzed are suitable for further genetic breeding or cultivation.



2010 ◽  
Vol 158 ◽  
pp. 197-203 ◽  
Author(s):  
Jie Liu ◽  
Yue Xin Han ◽  
Wan Zhong Yin

The process mineralogy of potassium-rich shale from Chaoyang of Liaoning, China, was studied. Research results showed there are much less variety and smaller quantities in mineral compositions. Calculated mineral composition by means of chemical composition analysis combined with XRD, MLA, IR and TG-DSC analyses showed that main minerals with were Potassium-feldspar, muscovite, biotite and illite, and gangue minerals were quartz and small amounts of hematite. Potassium-rich minerals such as potassium-feldspar and muscovite contact smoothly with quartz respectively, and there was the direction arrangement among potassium-feldspar, quartz and muscovite in the shale. And quartz and hematite were main cement in the shale. The influences of the research results on the potassium extraction from potassium-rich shale were distinct.



Author(s):  
Hitoshi Owada ◽  
Tomoko Ishii ◽  
Mayumi Takazawa ◽  
Hiroyasu Kato ◽  
Hiroyuki Sakamoto ◽  
...  

A “realistic alteration model” is needed for various cementitious materials. Hypothetical settings of mineral composition calculated based on the chemical composition of cement, such as Atkins’s model, have been used to estimate the alteration of cementitious material. However, model estimates for the concentration of certain elements such as Al and S in leachate have been different from experimental values. In a previous study, we created settings for a mineralogical alteration model by taking the initial chemical composition of cementitious materials from analysis results in experiments and applying their ratios to certain hydrated cement minerals, then added settings for secondary generated minerals in order to account for Ca leaching. This study of alteration estimates for ordinary portland cement (OPC) in groundwater showed that the change in Al and S concentrations in simulated leachate approached values for actual leachate[1]. In the present study, we develop an appropriate mineral alteration model for blended cementitious materials and conduct batch-type leaching experiments that use crushed samples of blast furnace slag cement (BFSC), silica cement (SC), and fly ash cement (FAC). The cement blends in these experiments used OPC blended with blast furnace slag of 70 wt.%, silica cement consisting of an amorphous silica fine powder of 20 wt.%, and fly ash of 30 wt.%. De-ionized water was used as the leaching solution. The solid-liquid ratios in the leaching tests were varied in order to simulate the alteration process of cement hydrates. The compositions of leachate and minerals obtained from leaching tests were compared with those obtained from models using hypothetical settings of mineral composition. We also consider an alteration model that corresponds to the diversity of these materials. As a result of applying the conventional OPC model to blended cementitious materials, the estimated Al concentration in the aqueous solution was significantly different from the measured concentration. We therefore propose an improved model that takes better account of Al behavior by using a more reliable initial mineral model for Al concentration in the solution.



2014 ◽  
Vol 936 ◽  
pp. 2383-2388
Author(s):  
Zhi Wen Li ◽  
Cheng Dong Liu ◽  
Xuan Qing Zhao ◽  
Jian Hui Lu ◽  
Guo Lin Guo

Using the analysis techniques of polarizing optical microscope and electron probe, mineral composition, ore texture and structure and the occurrence of Au in the primary ore are studied. The research shows that the main ore minerals in the ore include realgar, pyrite and arsenopyrite etc. Sulfur-stibarsen is the main carrier of Au, and is the major associated mineral of realgar, surrounded mainly by realgar, and partly is the associated mineral of arsenopyrite. The existence of visible gold and microscopic gold in the ore of this mining area can be excluded, and the gold might exist mainly in the form of inclusion gold, which is the so-called “nanoAu”.



2012 ◽  
Vol 66 (5) ◽  
pp. 545-551 ◽  
Author(s):  
Carlos Alberto Tello Sáenz ◽  
Eduardo Augusto Campos Curvo ◽  
Airton Natanael Coelho Dias ◽  
Cleber José Soares ◽  
Carlos José Leopoldo Constantino ◽  
...  

Studies of zircon grains using optical microscopy, micro-Raman spectroscopy, and scanning electron microscopy (SEM) have been carried out to characterize the surface of natural zircon as a function of etching time. According to the surface characteristics observed using an optical microscope after etching, the zircon grains were classified as: (i) homogeneous; (ii) anomalous, and (iii) hybrid. Micro-Raman results showed that, as etching time increases, the crystal lattice is slightly altered for homogeneous grains, it is completely damaged for anomalous grains, and it is altered in some areas for hybrid grains. The SEM (energy dispersive X-ray spectroscopy, EDS) results indicated that, independent of the grain types, where the crystallinity remains after etching, the chemical composition of zircon is approximately 33% SiO2:65% ZrO2 (standard natural zircon), and for areas where the grain does not have a crystalline structure, there are variations of ZrO2 and, mainly, SiO2. In addition, it is possible to observe a uniform surface density of fission tracks in grain areas where the determined crystal lattice and chemical composition are those of zircon. Regarding hybrid grains, we discuss whether the areas slightly altered by the chemical etching can be analyzed by the fission track method (FTM) or not. Results of zircon fission track and U-Pb dating show that hybrid and homogeneous grains can be used for dating, and not only homogeneous grains. More than 50 sedimentary samples from the Bauru Basin (southeast Brazil) were analyzed and show that only a small amount of grains are homogeneous (10%), questioning the validity of the rest of the grains for thermo-chronological evolution studies using zircon FTM dating.



2011 ◽  
Vol 194-196 ◽  
pp. 201-206
Author(s):  
Guo Ping Luo ◽  
Sheng Li Wu ◽  
Yi Ci Wang ◽  
Guang Jie Zhang ◽  
Zhi Zhong Hao ◽  
...  

The effects of compound silicate gangue on mineral composition and microstructure of sinter produced by Baiyunebo iron ore concentrates was studied by using mini-sintering test device and optical microscope. The result showed that compound silicate gangue has lower melting point, wider melting temperature range, longer melting time and melts easily to form glassiness during the sintering process. It can promote the solution of CaO and CaF2 in glassy phase, which affects viscosity and fluidity of glassy phase as well as the homogeneity of sinter microstructure. The compound silicate gangue intensely inhibits the generation of complex calcium ferrite and cuspidine as well. The major mineral compositions of sinter are hematite and glassy phase. The sinter exhibits multi-cavities and grainy structure when SiO2 exists entirely in the form of compound silicate gangue.



2021 ◽  
Vol 901 (1) ◽  
pp. 012044
Author(s):  
G V Stepanova ◽  
M V Volovik

Annotation It is shown that the buffer capacity of dry matter of alfalfa of the first cut in the flowering phase is 5.66-5.94 mol / liter. With an increase in the content of crude protein and crude ash by 1%, it increases by 0.14-0.40 and 0.49-0.86 mol / liter, respectively, with an increase in the content of soluble carbohydrates by 1%, it decreases by 1.44 mol / liter … The dry matter of the second cut alfalfa has a high forage quality. The content of crude protein from the stemming-beginning of budding phase to the flowering phase is in the range of 23.44-20.20%, crude ash 9.24-8.10%, while the content of crude fiber is reduced to 22.92-29.01%, dry matter - up to 20.84-26.00%. The buffer capacity of dry matter reaches 9.69-7.23 mol / liter. The main influence on the buffer capacity is exerted by the mineral composition of the dry matter. An increase in the content of crude ash by 1% increases the buffer capacity of dry matter by 0.55 ± 0.16 - 1.36 ± 0.14 mol / l, an increase in the content of crude protein by 1% increases the buffer capacity by 0.15 ± 0.06 - 0.39 ± 0.14 mol / liter.



Sign in / Sign up

Export Citation Format

Share Document