scholarly journals Identifying the efficiency decrease factor of motors working under power harmornic in 660V electric mining grids

2021 ◽  
Vol 15 (4) ◽  
pp. 108-113
Author(s):  
Le Xuan Thanh ◽  
Ho Viet Bun

Purpose. Identify the motors efficiency decrease factor corresponding to various values of load-carrying ratio. Methods. Basing on the onsite measurements of power harmonic in 660V low voltage (LV) grids in Vietnam underground mines, simulations have been done on MATLAB and compared with mathematical models. Verifying data will be implemented in Lab-measurements carried out on pumping system to reveal series of decreasing factors. Findings. Series factors present the relation of the level of power total harmonic distortion (THD) and the decrease in motor efficiency with alternative load-carrying ratio. The factors will help mine operators to have better understanding of the power harmonics impact on 660V motors. Originality. The proposed factors and simulation in MATLAB may be applied to all underground mining grids with diffe-rent input parameters of THD. Practical implications. The research is implemented to identify the factors obtained from the operation of motors which work in high power harmonic environment. The resulting factors could be utilized to recalculate mining efficiency.

Circuit World ◽  
2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Kannan Chandrasekaran ◽  
Nalin Kant Mohanty ◽  
Selvarasu Ranganathan

Purpose Multilevel inverter (MLI) is a prevailing sensible alternative to two-level inverters that offer a high-quality output voltage waveform, wherein the multiple input direct current (DC) levels are established by using isolated DC sources, batteries and renewable energy sources. The purpose of this paper is to develop MLI to offer lower total harmonic distortion (THD), higher output voltage levels and reduced switching components for high power applications. Design/methodology/approach In this paper, a new tapped sources stack succored modified HX bridge MLI (TSSSMHXBMLI) topology is proposed which includes two modules, such as tapped sources stack (TSS) and modified HX bridge inverter, which perform their function in a single stage. Also, this paper outlines the formulaic implementation of the multicarrier/sub-harmonic pulse width modulation (MCPWM/SHPWM) in a Xilinx Spartan3E-500 field programmable gate array (FPGA) is suitable for the developed MLI. Findings The feasibility of the suggested topology is well proved by both simulation and experiment results. Practical implications This paper examines a new topology of TSSSMHXBMLI with a view to minimize total count of switching components against basic MLI topologies. The operating sequence of the suggested TSSSMHXBMLI topology is verified with the simulation study followed by an experimental investigation. Originality/value The simulation and experimental results of suggested MLI topology reveals to obtain lower THD, higher output voltage levels and reduced switching components for high power applications.


Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5606
Author(s):  
Zhimeng Rao ◽  
Wenjuan Zhang ◽  
Gongping Wu ◽  
Jian Zheng ◽  
Shoudao Huang

In this study, a novel modular three-phase permanent magnet synchronous motor (PMSM) is proposed for low-voltage high power applications. The proposed modular three-phase PMSM has an independent segregated three-phase winding configuration, facilitating the implementation of the control algorithm. Firstly, on the basis of the electromagnetic properties, the mathematical model of the modular three-phase PMSM is established, considering the asymmetrical mutual inductances investigated by finite element analysis (FEA). Then, the predictive torque control (PTC) method combining the inductance characteristics of modular three-phase PMSM is developed, and excellent performance is obtained by adjusting the stator flux and torque. Finally, simulation and experiment are performed, and the results show that the proposed novel modular three-phase PMSM with the PTC method exhibits excellent control performance, and small stator current total harmonic distortion (THD).


2020 ◽  
Vol 53 (6) ◽  
pp. 763-770
Author(s):  
Iffouzar Koussaila ◽  
Khaldi Lyes ◽  
Kamal Himour ◽  
Deboucha Abdelhakim ◽  
Houari Azeddine ◽  
...  

An improved dynamic behavior of water pumping system is presented in this paper. The system consists of a seven-phase induction motor powered by a photovoltaic generator (PVG) and a battery bank, via two static converters controlled independently. A boost converter based on fuzzy logic controller is utilized to adapt the voltage of the photovoltaic generator in order to extract maximum power. A three levels neutral point clamped inverter (NPC) is introduced to attain a low voltage harmonic distortion in the system. In addition, an improved direct field oriented control with minimizing non-sequential currents for the seven-phase induction motor using fuzzy logic filter is implemented. To verify and validate the proposed system, an optimal operating point is chosen to locate the dynamic and static operating limits of the system. Moreover, the proposed system is simulated and analyzed. The minimization of the non-sequential currents component induces a quality energy improvement with minimizing of the Joule losses, which increase the system efficiency. The use of the seven-phase machine brings a degree of additional freedom to the system, its tolerance to faults is a capital issue for the isolated places.


2021 ◽  
Vol 309 ◽  
pp. 01073
Author(s):  
Sreekanth Reddy Kondreddy ◽  
B. Veeranna Sreenivasappa

A two-stage converter connects the input grid voltage to a pack of batteries with the voltage varying between 48-400 V, depending on the size and the range of the vehicle, with battery-operated electric and Plug-in Hybrid Electric Vehicles (PHEVs). This article offers a unique built-in converter that can interface with both high voltage (HV) and low voltage (LV) batteries. For all car architectures a universal charger that can accommodate this wide range of battery pack voltages is suitable. The novel integrated buck and boost converter (IBBC) is the proposed converter supplied using AC-DC driver at the front end mode. The main objective of this paper is to show a universal battery charger for an EV with a high power factor (PFC) and a small total harmonic distortion (THD) in addition to the high power density. A PFC converter is formed without any auxiliary circuit to balance the output voltage dependence of the battery against fluctuations in the ac grid input voltage, which in turn reduces the cost of additional circuit. A closed loop controller scheme is used to adjust for variations in the broad range output voltage and load. The proposed topology’s detailed operation is simulated using the MATLAB/Simulink software and achieved a THD of 1.18%.


Author(s):  
Victor V. SINYAVSKIY

At the initiative of S.P.Korolev, in 1959, Special Design Bureau No.1 (now RSC Energia) established the High-temperature Power Engineering and Electric Propulsion Center which was tasked with development of nuclear electric propulsion for heavy interplanetary vehicles. Selected as the source of electric power was a nuclear power unit based on a thermionic converter reactor, and selected as the engine was a stationary low-voltage magnetoplasmodynamic (MPD) high-power (0.5–1.0 MW) thruster which had thousands of hours of service life. The paper presents the results of extensive efforts in research, development, design, materials science experiments, and tests on the MPD-thruster, including the results of development and 500-hours life tests of an MPD-thruster with a 500-600 kW electric power input that used lithium propellant. The world’s first lithium 17 kW MPD-thruster was built and successfully tested in space. The paper points out that to this day nobody has surpassed the then achievements of RSC Energia neither in thruster output during long steady-state operation, nor in performance and service life. Key words: Martian expeditionary vehicle, nuclear electric rocket propulsion system, electric rocket thruster, magnetoplasmodynamic thruster, lithium, cathode, anode, barium, electric propulsion tests in space.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Alexander H. Frank ◽  
Robert van Geldern ◽  
Anssi Myrttinen ◽  
Martin Zimmer ◽  
Johannes A. C. Barth ◽  
...  

AbstractThe relevance of CO2 emissions from geological sources to the atmospheric carbon budget is becoming increasingly recognized. Although geogenic gas migration along faults and in volcanic zones is generally well studied, short-term dynamics of diffusive geogenic CO2 emissions are mostly unknown. While geogenic CO2 is considered a challenging threat for underground mining operations, mines provide an extraordinary opportunity to observe geogenic degassing and dynamics close to its source. Stable carbon isotope monitoring of CO2 allows partitioning geogenic from anthropogenic contributions. High temporal-resolution enables the recognition of temporal and interdependent dynamics, easily missed by discrete sampling. Here, data is presented from an active underground salt mine in central Germany, collected on-site utilizing a field-deployed laser isotope spectrometer. Throughout the 34-day measurement period, total CO2 concentrations varied between 805 ppmV (5th percentile) and 1370 ppmV (95th percentile). With a 400-ppm atmospheric background concentration, an isotope mixing model allows the separation of geogenic (16–27%) from highly dynamic anthropogenic combustion-related contributions (21–54%). The geogenic fraction is inversely correlated to established CO2 concentrations that were driven by anthropogenic CO2 emissions within the mine. The described approach is applicable to other environments, including different types of underground mines, natural caves, and soils.


Electronics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1340
Author(s):  
Yih-Her Yan ◽  
Hung-Liang Cheng ◽  
Chun-An Cheng ◽  
Yong-Nong Chang ◽  
Zong-Xun Wu

A novel single-switch single-stage high power factor LED driver is proposed by integrating a flyback converter, a buck–boost converter and a current balance circuit. Only an active switch and a corresponding control circuit are used. The LED power can be adjusted by the control scheme of pulse–width modulation (PWM). The flyback converter performs the function of power factor correction (PFC), which is operated at discontinuous-current mode (DCM) to achieve unity power factor and low total current harmonic distortion (THDi). The buck–boost converter regulates the dc-link voltage to obtain smooth dc voltage for the LED. The current–balance circuit applies the principle of ampere-second balance of capacitors to obtain equal current in each LED string. The steady-state analyses for different operation modes is provided, and the mathematical equations for designing component parameters are conducted. Finally, a 90-W prototype circuit with three LED strings was built and tested. Experimental results show that the current in each LED string is indeed consistent. High power factor and low THDi can be achieved. LED power is regulated from 100% to 25% rated power. Satisfactory performance has proved the feasibility of this circuit.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 800
Author(s):  
David Marroqui ◽  
Ausias Garrigós ◽  
Cristian Torres ◽  
Carlos Orts ◽  
Jose M. Blanes ◽  
...  

Many applications (electric vehicles, renewable energies, low-voltage DC grids) require simple, high-power density and low-current ripple-boost converters. Traditional step-up converters are limited when large transformation ratios are involved. In this work is proposed a step-up converter that brings together the characteristics of high gain, low ripple, and high-power density. From the converter proposal, a mathematical analysis of its operation is first performed, including its static transfer function, stress of components, and voltage and current ripples. Furthermore, it provides a design example for an application of Vin = 48 V to Vo = 270 V and 500 W. For its implementation, two different wide bandgap (WBG) semiconductor models have been used, hybrid GaN cascodes and SiC MOSFETs. Finally, the experimental results of the produced prototypes are shown, and the results are discussed.


1998 ◽  
Vol 34 (4) ◽  
pp. 409 ◽  
Author(s):  
P. Chevalier ◽  
X. Wallart ◽  
B. Bonte ◽  
R. Fauquembergue

Sign in / Sign up

Export Citation Format

Share Document