scholarly journals Taraxerol protects the human hepatic L02 cells from hydrogen peroxide-induced apoptosis

2017 ◽  
Vol 12 (2) ◽  
pp. 20 ◽  
Author(s):  
Xiang-Yang Yao ◽  
Qin Bai

<p class="Abstract">Taraxerol is known to exhibit anti-inflammatory and anti-cancer activity. However, cytoprotective effect of taraxerol on hepatocytes has not been reported. In the present study, we investigated the hepatoprotective effect of taraxerol in the human hepatic L02 cells injured by hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>). Taraxerol decreased H<sub>2</sub>O<sub>2</sub>-induced cell viability loss and lactate dehydrogenase release. Taraxerol also inhibited H<sub>2</sub>O<sub>2</sub>-induced cell apoptosis. Further, taraxerol attenuated H<sub>2</sub>O<sub>2</sub>-induced increase in cleaved-caspase-3 and cleaved-PARP. H<sub>2</sub>O<sub>2</sub>-activated p38 and JNK were also inhibited by taraxerol. These data suggest that taraxerol could protect the L02 cells against H<sub>2</sub>O<sub>2</sub>-induced apoptosis via suppression of p38 and JNK. Taraxerol may be an effective protective agent against oxidative stress-induced liver injury.</p>

2017 ◽  
Vol 95 (7) ◽  
pp. 773-786 ◽  
Author(s):  
Saeed Mehrzadi ◽  
Majid Safa ◽  
Seyed Kamran Kamrava ◽  
Radbod Darabi ◽  
Parisa Hayat ◽  
...  

Many obstacles compromise the efficacy of bone marrow mesenchymal stem cells (BM-MSCs) by inducing apoptosis in the grafted BM-MSCs. The current study investigates the effect of melatonin on important mediators involved in survival of BM-MSCs in hydrogen peroxide (H2O2) apoptosis model. In brief, BM-MSCs were isolated, treated with melatonin, and then exposed to H2O2. Their viability was assessed by MTT assay and apoptotic fractions were evaluated through Annexin V, Hoechst staining, and ADP/ATP ratio. Oxidative stress biomarkers including ROS, total antioxidant power (TAP), superoxide dismutase (SOD) and catalase (CAT) activity, glutathione (GSH), thiol molecules, and lipid peroxidation (LPO) levels were determined. Secretion of inflammatory cytokines (TNF-α and IL-6) were measured by ELISA assay. The protein expression of caspase-3, Bax, and Bcl-2, was also evaluated by Western blotting. Melatonin pretreatment significantly increased viability and decreased apoptotic fraction of H2O2-exposed BM-MSCs. Melatonin also decreased ROS generation, as well as increasing the activity of SOD and CAT enzymes and GSH content. Secretion of inflammatory cytokines in H2O2-exposed cells was also reduced by melatonin. Expression of caspase-3 and Bax proteins in H2O2-exposed cells was diminished by melatonin pretreatment. The findings suggest that melatonin may be an effective protective agent against H2O2-induced oxidative stress and apoptosis in MSC.


2019 ◽  
Vol 18 (11) ◽  
pp. 1639-1648 ◽  
Author(s):  
Daipeng Xiao ◽  
Fen He ◽  
Dongming Peng ◽  
Min Zou ◽  
Junying Peng ◽  
...  

Background: Berberine (BBR), an isoquinoline plant alkaloid isolated from plants such as Coptis chinensis and Hydrastis canadensis, own multiple pharmacological activities. Objective: In this study, seven BBR derivatives were synthesized and their anticancer activity against HeLa cervical and A549 human lung cancer cell lines were evaluated in vitro. Methods: The anti-cancer activity was measured by MTT assay, and apoptosis was demonstrated by the annexin V-FITC/PI staining assay. The intracellular oxidative stress was investigated through DCFH-DA assay. The molecular docking study was carried out in molecular operating environment (MOE). Results: Compound B3 and B5 showed enhanced anti-cancer activity compared with BBR, the IC50 for compound B3 and B5 were significantly lower than BBR, and compound B3 at the concentration of 64 or 128 µM induced apoptosis in HeLa and A549 cell lines. The reactive oxygen species (ROS) was generated in both cell lines when treated with 100 µM of all the compounds, and compound B3 and B5 induced higher activity in the generation of ROS, while compound B3 exhibited the highest activity, these results are in accordance with the cytotoxicity results, indicating the cytotoxicity were mostly generated from the oxidative stress. In addition, molecular docking analysis showed that compound B3 had the greatest affinity with Hsp90. Upon binding, the protective function of Hsp90 was lost, which might explain its higher cytotoxicity from molecular interaction aspect. Conclusion: All the results demonstrated that compound B3 and B5 showed significantly higher anti-cancer ability than BBR, and compound B3 is a promising anticancer drug candidate.


2018 ◽  
Vol 5 (11) ◽  
pp. 180509 ◽  
Author(s):  
Yinghua Li ◽  
Min Guo ◽  
Zhengfang Lin ◽  
Mingqi Zhao ◽  
Yu Xia ◽  
...  

The morbidity and mortality of hepatocellular carcinoma, the most common cancer, are increasing continuously worldwide. Galangin (Ga) has been demonstrated to possess anti-cancer effect, but the efficacy of Ga was limited by its low permeability and poor solubility. To develop aqueous formulation and improve the anti-cancer activity of Ga, surface decoration of functionalized selenium nanoparticles with Ga (Se@Ga) was synthesized in the present study. The aim of this study was to evaluate the anti-cancer effect of Se@Ga and the mechanism on HepG2 cells. Se@Ga-induced HepG2 cell apoptosis was confirmed by depletion of mitochondrial membrane potential, translocation of phosphatidylserine and caspase-3 activation. Furthermore, Se@Ga enhanced the anti-cancer activity of HepG2 cells through ROS-mediated AKT and p38 signalling pathways. In summary, these results suggest that Se@Ga might be potential candidate chemotherapy for cancer.


2007 ◽  
Vol 292 (1) ◽  
pp. F440-F447 ◽  
Author(s):  
Shougang Zhuang ◽  
Yan Yan ◽  
Rebecca A. Daubert ◽  
Jiahuai Han ◽  
Rick G. Schnellmann

Reactive oxygen species, including hydrogen peroxide (H2O2), are generated during ischemia-reperfusion and are critically involved in acute renal failure. The present studies examined the role of the extracellular signal-regulated kinase (ERK) pathway in H2O2-induced renal proximal tubular cells (RPTC) apoptosis. Exposure of RPTC to 1 mM H2O2resulted in apoptosis and activation of ERK1/2 and Akt. Pretreatment with the specific MEK inhibitors, U0126 and PD98059, or adenoviral infection with a construct that encodes a negative mutant of MEK1, protected cells against H2O2-induced apoptosis. In contrast, expression of constitutively active MEK1 enhanced H2O2-induced apoptosis. H2O2induced activation of caspase-3 and phosphorylation of histone H2B at serine 14, a posttranslational modification required for nuclear condensation, which also were blocked by ERK1/2 inhibition. Furthermore, blockade of ERK1/2 resulted in an increase in Akt phosphorylation and blockade of Akt potentiated apoptosis and diminished the protective effect conferred by ERK inhibition in H2O2-treated cells. Although Z-DEVD-FMK, a caspase-3 inhibitor, was able to inhibit histone H2B phosphorylation and apoptosis, it did not affect ERK1/2 phosphorylation. We suggest that ERK elicits apoptosis in epithelial cells by activating caspase-3 and inhibiting Akt pathways and elicits nuclear condensation through caspase-3 and histone H2B phosophorylation during oxidant injury.


2001 ◽  
Vol 354 (3) ◽  
pp. 493-500 ◽  
Author(s):  
Jeremy P. E. SPENCER ◽  
Hagen SCHROETER ◽  
Gunter KUHNLE ◽  
S. Kaila S. SRAI ◽  
Rex M. TYRRELL ◽  
...  

There is considerable current interest in the cytoprotective effects of natural antioxidants against oxidative stress. In particular, epicatechin, a major member of the flavanol family of polyphenols with powerful antioxidant properties in vitro, has been investigated to determine its ability to attenuate oxidative-stress-induced cell damage and to understand the mechanism of its protective action. We have induced oxidative stress in cultured human fibroblasts using hydrogen peroxide and examined the cellular responses in the form of mitochondrial function, cell-membrane damage, annexin-V binding and caspase-3 activation. Since one of the major metabolites of epicatechin in vivo is 3′-O-methyl epicatechin, we have compared its protective effects with that of epicatechin. The results provide the first evidence that 3′-O-methyl epicatechin inhibits cell death induced by hydrogen peroxide and that the mechanism involves suppression of caspase-3 activity as a marker for apoptosis. Furthermore, the protection elicited by 3′-O-methyl epicatechin is not significantly different from that of epicatechin, suggesting that hydrogen-donating antioxidant activity is not the primary mechanism of protection.


Sign in / Sign up

Export Citation Format

Share Document