scholarly journals Factors influencing the composition and balance of foals’ microbiota

2021 ◽  
Vol 10 (9) ◽  
pp. e12810917778
Author(s):  
Mariana Andrade Mousquer ◽  
Tatiane Leite Almeida ◽  
Rafaela Pinto de Souza ◽  
Vitória Müller ◽  
Eliza Moreira Piemolini ◽  
...  

Horses are extremely dependent on the correct functioning of the digestive system for energy production and the performance of their physiological functions. The intestinal microbiota plays a key role in maintaining health, being related to the modulation of the immune system, protection against pathogenic microorganisms and also for obtaining nutrients. Due to the importance of the microbiota in maintaining health from the beginning of life, this review aims to address the early composition, development and factors that influence the intestinal microbiota in foals. A qualitative review was carried out in the main research databases. Data referring to the early microbial colonization suggest that it occurs since intrauterine life, despite the fact that at birth, the foals acquire a large part of the microorganisms that will form its microbiota. The main phyla involved in this process are Proteobacteria, Firmicutes, Actinobacteria and Bacteroidetes, which are aquired from a combination of bacteria present in the feces, vagina and other maternal environments. From birth until the first weeks of life, the microbiota gradually changes due to several factors, which include the composition of food, coprophagy, exposure to different environments and medications. The foal's microbiota becomes more stable in the first and second months of life. It is suggested that changes in the composition (dysbiosis) and diversity of the different phyla are a risk factor for the development of diseases, since the microbiota directly influences the immune system. From advances in sequencing technologies it was possible to investigate the components and factors associated with early colonization of microbiota in horses as well as factors related to the development of dysbiosis and disease. Nevertheless, many facts are still unclear and should be adressed in the future.

2022 ◽  
pp. 37-74
Author(s):  
Weilan Wang ◽  
◽  
Tingting Ju ◽  
Michael G. Gänzle ◽  
◽  
...  

Vertebrate animals are holobionts and their physiology and metabolism are influenced by their commensal microbiota. Gut microbiota and their metabolites play a key role in the host defense against pathogenic microorganisms, shape the immune system, and impact the resistance to chronic disease. The metabolic activity of intestinal microbiota contributes significantly to the conversion of diet components to molecules that can be absorbed and metabolized by the host. The metabolic capacity of the intestinal microbiota by far exceeds the metabolic capacity of the hosts. Collectively, gut microbes support the digestion of the major nutrients, i.e. carbohydrates, proteins and lipids, and impact uptake and conversion of micronutrients, e.g. phenolic compounds and minerals. This chapter provides an overview on the metabolism of carbohydrates and bile salts by pig microbiota.


2020 ◽  
Vol 21 (15) ◽  
pp. 1603-1615
Author(s):  
Eva Alvarez-Vieites ◽  
Arora López-Santamarina ◽  
José M. Miranda ◽  
Alicia del Carmen Mondragón ◽  
Alexandre Lamas ◽  
...  

In recent decades, there has been a very rapid increase in the prevalence of diabetes globally, with serious health and economic implications. Although today there are several therapeutic treatments for this disease, these do not address the causes of the disease and have serious side effects, so it is necessary to seek new treatments to replace or complement the existing ones. Among these complementary treatments, a strong link between the intestinal microbiota and diabetes has been demonstrated, which has focused attention on the use of biotherapy to regulate the function of the intestinal microbiota and, thus, treat diabetes. In this way, the main objective of this work is to provide a review of the latest scientific evidence on diabetes, gathering information about new trends in its management, and especially, the influence of the intestinal microbiota and microbiome on this pathology. It is possible to conclude that the relationship between the intestinal microbiota and diabetes is carried out through alterations in energy metabolism, the immune system, changes in intestinal permeability, and a state of low-intensity systemic inflammation. Although, currently, most of the experimental work, using probiotics for diabetes management, has been done on experimental animals, the results obtained are promising. Thus, the modification of the microbiota through biotherapy has shown to improve the symptoms and severity of diabetes through various mechanisms related to these alterations.


Vaccines ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 584
Author(s):  
Natalia Nunez ◽  
Louis Réot ◽  
Elisabeth Menu

Interactions between the immune system and the microbiome play a crucial role on the human health. These interactions start in the prenatal period and are critical for the maturation of the immune system in newborns and infants. Several factors influence the composition of the infant’s microbiota and subsequently the development of the immune system. They include maternal infection, antibiotic treatment, environmental exposure, mode of delivery, breastfeeding, and food introduction. In this review, we focus on the ontogeny of the immune system and its association to microbial colonization from conception to food diversification. In this context, we give an overview of the mother–fetus interactions during pregnancy, the impact of the time of birth and the mode of delivery, the neonate gastrointestinal colonization and the role of breastfeeding, weaning, and food diversification. We further review the impact of the vaccination on the infant’s microbiota and the reciprocal case. Finally, we discuss several potential therapeutic interventions that might help to improve the newborn and infant’s health and their responses to vaccination. Throughout the review, we underline the main scientific questions that are left to be answered and how the non-human primate model could help enlighten the path.


Biologics ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 89-110
Author(s):  
Neslihan Yeşilyurt ◽  
Birsen Yılmaz ◽  
Duygu Ağagündüz ◽  
Raffaele Capasso

Intestinal microbiota interacts with other systems, especially the immune system, which is responsible for protecting the body by recognizing “stranger” (pathogen associated molecular patterns-PAMPs) and “danger” (damage-associated molecular patterns-DAMPs) molecular motifs. In this manner, it plays an important role in the pathogenesis of various diseases and health. Despite the use of probiotics that modulate the intestinal microbiota in providing health benefits and in the treatment of diseases, there are some possible concerns about the possibility of developing adverse effects, especially in people with suppressed immune systems. Since probiotics provide health benefits with bioactive compounds, studies are carried out on the use of products containing non-living probiotic microorganisms (paraprobiotics) and/or their metabolites (postbiotics) instead of probiotic products. It is even reported that these microbial compounds have more immunomodulatory activities than living microorganisms via some possible mechanism and eliminates some disadvantages of probiotics. Considering the increasing use of functional foods in health and disease, further studies are needed with respect to the benefits and advantages of parabiotic and/or postbiotic use in the food and pharmaceutical industry as well as immune system modulation. Although probiotics have been extensive studied for a long time, it seems that postbiotics are promising tools for future research and applications according to the recent literature. This review aimed to evaluate the interaction of probiotics and postbiotics with the immune systems and also their advantages and disadvantages in the area of food-pharmaceutical industry and immune system modulation.


Author(s):  
Jiaying Wu ◽  
Yuyu Zhang ◽  
Hongyu Yang ◽  
Yuefeng Rao ◽  
Jing Miao ◽  
...  

Epilepsy is one of the most widespread serious neurological disorders, and an aetiological explanation has not been fully identified. In recent decades, a growing body of evidence has highlighted the influential role of autoimmune mechanisms in the progression of epilepsy. The hygiene hypothesis draws people’s attention to the association between gut microbes and the onset of multiple immune disorders. It is also believed that, in addition to influencing digestive system function, symbiotic microbiota can bidirectionally and reversibly impact the programming of extraintestinal pathogenic immune responses during autoimmunity. Herein, we investigate the concept that the diversity of parasitifer sensitivity to commensal microbes and the specific constitution of the intestinal microbiota might impact host susceptibility to epilepsy through promotion of Th17 cell populations in the central nervous system (CNS).


2015 ◽  
Vol 39 (1) ◽  
pp. 9-19 ◽  
Author(s):  
Yuk Man Kevin Lei ◽  
Lekha Nair ◽  
Maria-Luisa Alegre

2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 181-181
Author(s):  
Martin Lessard ◽  
Mylène Blais ◽  
Guylaine Talbot ◽  
J Jacques Matte ◽  
Ann Letellier ◽  
...  

Abstract Lactation, feeding conditions, microbial interventions and piglet growth in the first few weeks of life have important impact on the intestinal microbiota establishment and immune system development of piglets. Indeed, colostrum and milk contain various bioactive components such as immune factors, antimicrobial peptides and oligosaccharides that contribute to maintain intestinal homeostasis and regulate interactions between microbiota and host immune system. Recent results revealed that low birth weight piglet (LBWP) with poor weight gain during the first two weeks of life develop different intestinal microbiota and immune response profiles compared to high BWP (HBWP) littermates. Consequently, piglets within litters may have different resilience to infections after weaning and benefit from feed additives in a specific manner. A study has been performed to evaluate the potential of bovine colostrum extract (BC) as replacement to plasma proteins for improving gut health and resilience to Salmonella infection in piglets. Results revealed that in weaned piglets fed BC, intestinal microbiota was differently modulated and bacterial dysbiosis induced by Salmonella was restored faster. Moreover, expression of genes involved in innate immunity such as β-defensin-2 and glutathione peroxidase-2 was respectively down- and up-regulated in BC fed piglets. A combination of dietary supplementation with BC, cupper and vitamins A and D has also been tested in LBWP and HBWP, and there is clear evidence that BC in combination with other feed additives promote growth and gut health in both LBWP and HBWP. The porcine intestinal epithelial cell line IPEC-J2 was used to better understand the functional properties of BC. Results indicated that BC improves wound healing, enhances barrier function and modulates the expression of several genes involved in innate immune response. Finally, as microbial intervention, the potential of fecal transplantation to modulate intestinal microbiota and immune system development of piglets is under investigation and will be discussed.


2021 ◽  
Vol 2 (3) ◽  
pp. 11-34
Author(s):  
Aparajita Ray ◽  
Chiranjeeb Dey

Immune system is the adaptive defense mechanism which is evolved in vertebrates to keep them from invading pathogenic microorganisms and cancer. In immune system consists of some specialized cells like: lymphocytes, neutrophils, NK cells, basophils, macrophages, eiosinophils, mast cells, etc.Ecotoxicology is a subdisicipline of environmental toxicology concerd with studing the damaging effects of toxicants at the population and nature. Environmental toxicants are simply toxic substances in the nature. Environmental toxicant which is effect on ecosystem very badly.In this paper we discuss that how environmental toxicant effect on immune system or immune cells.


Sign in / Sign up

Export Citation Format

Share Document