scholarly journals Soil inorganic nitrogen in spatially distinct areas within a commercial dairy farm in Canterbury, New Zealand

2017 ◽  
Vol 79 ◽  
pp. 83-88
Author(s):  
D.C. Ekanayake ◽  
J.L. Owens ◽  
S. Hodge ◽  
J.A.K. Trethewey ◽  
R.L. Roten ◽  
...  

For precision nitrogen (N) fertilisation of grazed dairy paddocks, soil N distribution needs to be quantified. It is expected that farm infrastructure will affect inorganic-N distribution due to its influence on cow grazing behaviour. Surface soil from four spatially distinct areas (main gate, water troughs, non-irrigated and the remaining pasture) was analysed for soil ammonium-N (NH4 +-N) and nitrate-N (NO3 --N) from three paddocks (180 soil samples) on an irrigated commercial dairy farm in Canterbury, New Zealand. Variation between paddocks was higher for NO3 - (P

1993 ◽  
Vol 120 (3) ◽  
pp. 361-369 ◽  
Author(s):  
C. A. Watson ◽  
S. M. Fowlerf ◽  
D. Wilman

SUMMARYOn two organic farms, nitrate-N and ammonium-N in the surface layers of the soil of representative fields were recorded for 2 years. Nitrate-N was also determined in different soil layers down to 120 cm at the beginning, middle and end of two winters and at intervals after ploughing three fields, to seek evidence of leaching.Nitrate-N and ammonium-N were both consistently low in the surface layers of fields in ley. Nitrate-N accumulated in arable soils on some occasions when there was little or no crop uptake of N, after ploughing, and after very heavy applications of manure.There was some evidence of nitrate leaching in all five fields which were deep-sampled. In four cases, the loss by leaching appeared to be < 25 kg N/ha per winter. In the other case, in which a 4-year ley was ploughed on 5 October, the loss by leaching appeared to be c. 70 kg N/ha. Ploughing in winter, rather than early autumn, might have reduced the nitrate leached, but the drilling of the next crop might have been delayed.The nitrate concentration of water draining from recently ploughed sandy soil in Shropshire was high, but it would have been diluted by water draining from unploughed fields.


2011 ◽  
Vol 51 (5) ◽  
pp. 416 ◽  
Author(s):  
C. J. Hoogendoorn ◽  
K. Betteridge ◽  
S. F. Ledgard ◽  
D. A. Costall ◽  
Z. A. Park ◽  
...  

A replicated grazing study measuring nitrogen (N) leaching from cattle-, sheep- and deer-grazed pastures was conducted to investigate the impact of different animal species on N leaching in the Lake Taupo catchment in New Zealand. Leaching losses of nitrate N from intensively grazed pastures on a highly porous pumice soil in the catchment averaged 37, 26 and 25 kg N/ha.year for cattle-, sheep- and deer-grazed areas, respectively, over the 3-year study and were not significantly different (P > 0.05). Leaching losses of ammonium N were much lower (3 kg N/ha.year for all three species of grazer; P > 0.05). Amounts of dissolved organic N leached were significantly higher than that of mineral N (nitrate N + ammonium N), and over the 3-year study averaged 44, 43 and 39 kg N/ha.year for cattle-, sheep- and deer-grazed areas, respectively (P > 0.05). On a stock unit equivalence basis (1 stock unit is equivalent to 550 kg DM consumed/year), cattle-grazed areas leached significantly more mineral N than sheep- or deer-grazed areas (5.5, 2.9 and 3.4 g mineral N leached/24 h grazing by 1 stock unit, for cattle, sheep and deer, respectively) (P < 0.001). Likewise, based on the amount of N apparently consumed (estimated by difference in mass of herbage N pre- and post-grazing), cattle-grazed pastures leached more mineral N than sheep- or deer-grazed pastures (123, 75 and 75 g mineral N/kg N apparently consumed for cattle, sheep and deer, respectively) (P < 0.01). This study gives valuable information on mineral N leaching in a high-rainfall environment on this free-draining pumice soil, and provides new data to assist in developing strategies to mitigate mineral N leaching losses from grazed pastures using different animal species.


Author(s):  
Ana González-Pedraza ◽  
Juan Escalante

The main source of N in the soil is organic matter; therefore, its availability depends on its quantity and quality, microbial activity, soil characteristics and management. An efficient way to quantify available N is by mineralizing it as ammonium (N-NH ) and nitrate (N-NO ). Therefore, in this study, the total and available N was determined in soil samples 0-20 cm deep from two plots with plantain plants (Musa AAB plantain subgroup cv. Hartón) with high and low vigor (AV and BV, respectively), in the South of Lake Maracaibo. Total N was determined by the Kjeldalh method and the mineralization of available N by incubation under laboratory conditions for 10 weeks. The accumulated mineralized N (Nm), the constant mineralization rate of (k) and the potentially mineralizable N (N0) were calculated. A one-way analysis of variance was applied, when it was significant (p<0.05), a Tukey test was applied for multiple comparisons of means. Total N was low (<0.025 %) and did not present statistical differences (p<0.05) between AV and BV. The accumulated mineralized N-NO was statistically (p<0.05) higher (524.47 mg.kg-1) in BV, while the N-NH did not present differences between AV and BV. Only k was statistically higher (0.07 ± 0.03; p<0.05) in BV. Nitrification was the process that prevailed especially in BV where organic carbon was higher and presented a higher percentage of sand.


1989 ◽  
Vol 29 (6) ◽  
pp. 837
Author(s):  
MG Mason

Urea, ammonium sulfate and ammonium nitrate were compared as sources of nitrogen (N) for wheat grown on very acid soils at 2 sites in 1980, in the absence of lime or where lime at 2 t/ha was incorporated into the top 10 cm of soil. The plots were soil sampled each week for the first 5 weeks after sowing, and further samples were collected at 9 weeks. Wheat tops were sampled 4 times during the first 6 weeks after sowing. Soils and plants were analysed for ammonium-N and nitrate-N. Application of each fertiliser initially caused increased soil levels of ammonium-N which fell with time at both sites. Increases in nitrate-N were small and were usually not significant. At 1 site (Bunketch), and with ammonium sulfate as the N source when no lime was added, there was a slower rate of decline in ammonium-N than in the presence of lime. Fertiliser type did not result in any significant differences in ammonium and N concentrations in the soil, apart from the higher levels of nitrate-N in the ammonium nitrate treatments. At both sites and particularly at Perenjori both in the absence and presence of lime, nitrate-N concentrations in plants were higher for the treatments with N fertiliser than for the unfertilised controls. This suggests that the N applied as fertiliser ammonium is nitrified before it is taken up by the plants. At the first plant sampling at Perenjori and at the first 2 samplings at Bunketch, ammonium-N levels in the fertilised plants were higher than in the unfertilised plants, suggesting that ammonium-N was readily taken up by the plants. Plant nitrate levels were lower at Bunketch in the absence of lime, than where lime was added. Grain yields were significantly increased at both sites by N fertiliser application. The 3 fertilisers were equally effective and there was no significant response to lime. Both nitrate and ammonium-N appeared to be readily utilised by the plant.


2020 ◽  
Author(s):  
Chie Hayakawa ◽  
Taichi Kobayashi ◽  
Kazumichi Fujii ◽  
Yoshiyuki Inagaki ◽  
Keishi Senoo

&lt;p&gt;&lt;strong&gt;Introduction &amp; objectives:&lt;/strong&gt; Over ten thousand years, soils have been formed through events of volcanic ash deposition in Hokkaido, Japan. The soil organic matter (SOM) in the past surface layer has been buried in the deeper soil. The buried humic horizons serve as a large carbon (C) reservoir. The SOM in the deeper soil horizons is preserved due to lower microbial activities and limited inputs of fresh organic matters. However, when the buried humic horizons are exposed to the surface by deep plowing and bottom plow tillage, decomposition of the exposed SOM may be accelerated through priming effects, due to the increased supply of low-molecular-weight (LMW) substances from fresh plant litter inputs. To test this, we examined glucose concentration dependency of priming effect and the change of SOC balance through priming effect using &lt;sup&gt;13&lt;/sup&gt;C tracer incubation.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Materials &amp; methods:&lt;/strong&gt; Soil samples were collected from the volcanic soil profiles in pasture site and adjacent forest sites in Hokkaido, Japan. The moist soils were sieved (&lt; 4 mm) to eliminate plant debris and stones for the incubation study and the other analysis. A &lt;sup&gt;13&lt;/sup&gt;C-glucose solution (99 atom%; 0 &amp;#8211; 3.9 mg glucose g&lt;sup&gt;-1&lt;/sup&gt;) was added to moist soil (equivalent to 10 g oven-dried weight) and incubated at 20&amp;#186;C in the dark for 30 days. The head space gas sample was periodically taken into the vial, and &lt;sup&gt;13&lt;/sup&gt;CO&lt;sub&gt;2&lt;/sub&gt; and &lt;sup&gt;12&lt;/sup&gt;CO&lt;sub&gt;2&lt;/sub&gt; concentrations were determined by GC-MS. Priming effect (PE) was calculated by subtraction between the amounts of &lt;sup&gt;12&lt;/sup&gt;CO&lt;sub&gt;2&lt;/sub&gt; with and without glucose. The head space gas in the bottle was flush out and replaced to CO&lt;sub&gt;2&lt;/sub&gt;-free-air every sampling time. We also measured soil microbial biomass C (MBC) by chloroform fumigation method, bacterial and fungal biomass by 16S and 18S rRNA genes targeted real-time PCR, SOC concentrations, inorganic N concentrations (ammonium and nitrate) and the other physicochemical properties of the soil profiles.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Results &amp; discussion: &lt;/strong&gt;Glucose addition induced the positive PEs in the buried humic soil samples of both sites, and the magnitudes of PEs (cumulative primed-CO&lt;sub&gt;2&lt;/sub&gt; amounts) in the buried humic soil samples were 0.4 to 1.5 times as those in the surface soils. However, the negative PEs were detected in the forest surface soil, probably because of low soil pH and relatively high inorganic N concentration. The magnitudes of PEs were dependent on added glucose concentrations for all the soils, and the threshold between negative and positive PEs corresponded to 3.5 % of glucose-C relative to MBC in the forest surface soil. The positive correlation between evolution rates of primed-CO&lt;sub&gt;2&lt;/sub&gt; significantly and bacterial or fungal biomass suggests both bacteria and fungi contributes to PE in the soils studied. Even if glucose addition induced PE, total SOC after incubation increased when glucose-C was added more than 0.5 mg C g&lt;sup&gt;-1&lt;/sup&gt; in the all soils. This implies that the optimized fresh litter input can control priming effects and C sequestration in volcanic soils.&lt;/p&gt;


2021 ◽  
Author(s):  
Yaran Bi ◽  
Linlin Wang ◽  
Wenyong Wu ◽  
Renkuan Liao ◽  
xiangshuai Bi ◽  
...  

Abstract Quantifying the spatial distribution of nitrogen (N) in the soil under long-term drip fertigation events is essential for the optimal regulation of drip fertigation systems. In this study, a greenhouse soil that has been under drip irrigation for 20 years was selected as the research object, and soil samples were collected from 0-50 cm soil depth. The concentrations of N in soil samples were measured and their spatial distribution characteristics were quantified by classical statistical analysis and multifractal analysis. The results showed that long-term drip fertigation and the influence of natural factors resulted in the nitrate N mainly accumulating in the shallow layer of the soil and within a distance from the drip irrigation belt, and the spatial heterogeneity gradually decreased with increasing depth. The content of ammonium N was low and its distribution was observed in the whole section. Multifractal analysis indicated that the Δα value of nitrate N and inorganic N gradually increased with the increase of research scale, i.e., the spatial heterogeneity gradually increased, and it did not appreciably change for ammonium N. Meanwhile, the local high value region was the main factor leading to the spatial heterogeneity of N, and this dominant effect gradually increased with increasing depth. Multifractal analysis can effectively reflect the local information of N spatial distribution in the soil and provide a more detailed description of the spatial heterogeneity of soil properties.


Water ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 320
Author(s):  
Qianyao Si ◽  
Mary G. Lusk ◽  
Patrick W. Inglett

Stormwater infiltration basins (SIBs) are vegetated depressions that collect stormwater and allow it to infiltrate to underlying groundwater. Their pollutant removal efficiency is affected by the properties of the soils in which they are constructed. We assessed the soil nitrogen (N) cycle processes that produce and remove inorganic N in two urban SIBs, with the goal of further understanding the mechanisms that control N removal efficiency. We measured net N mineralization, nitrification, and potential denitrification in wet and dry seasons along a sedimentation gradient in two SIBs in the subtropical Tampa, Florida urban area. Net N mineralization was higher in the wet season than in the dry season; however, nitrification was higher in the dry season, providing a pool of highly mobile nitrate that would be susceptible to leaching during periodic dry season storms or with the onset of the following wet season. Denitrification decreased along the sediment gradient from the runoff inlet zone (up to 5.2 μg N/g h) to the outermost zone (up to 3.5 μg N/g h), providing significant spatial variation in inorganic N removal for the SIBs. Sediment accumulating around the inflow areas likely provided a carbon source, as well as maintained stable anaerobic conditions, which would enhance N removal.


1987 ◽  
Vol 28 (3) ◽  
pp. 393-406 ◽  
Author(s):  
Patricia L. Fall

AbstractSurface soil samples from the forested Chuska Mountains to the arid steppe of the Chinle Valley, Northeastern Arizona, show close correlation between modern pollen rain and vegetation. In contrast, modern alluvium is dominated by Pinus pollen throughout the canyon; it reflects neither the surrounding floodplain nor plateau vegetation. Pollen in surface soils is deposited by wind; pollen grains in alluvium are deposited by a stream as sedimentary particles. Clay-size particles correlate significantly with Pinus, Quercus, and Populus pollen. These pollen types settle, as clay does, in slack water. Chenopodiaceae-Amaranthus, Artemisia, other Tubuliflorae, and indeterminate pollen types correlate with sand-size particles, and are deposited by more turbulent water. Fluctuating pollen frequencies in alluvial deposits are related to sedimentology and do not reflect the local or regional vegetation where the sediments were deposited. Alluvial pollen is unreliable for reconstruction of paleoenvironments.


2013 ◽  
Vol 13 (1) ◽  
pp. 411-428 ◽  
Author(s):  
J. Jung ◽  
H. Furutani ◽  
M. Uematsu ◽  
S. Kim ◽  
S. Yoon

Abstract. Aerosol, rainwater, and sea fog water samples were collected during the cruise conducted over the subarctic western North Pacific Ocean in the summer of 2008, in order to estimate dry, wet, and sea fog deposition fluxes of atmospheric inorganic nitrogen (N). During sea fog events, mean number densities of particles with diameters larger than 0.5 μm decreased by 12–78%, suggesting that particles with diameters larger than 0.5 μm could act preferentially as condensation nuclei (CN) for sea fog droplets. Mean concentrations of nitrate (NO3−), methanesulfonic acid (MSA), and non sea-salt sulfate (nss-SO42−) in sea fog water were higher than those in rainwater, whereas those of ammonium (NH4+) in both sea fog water and rainwater were similar. These results reveal that sea fog scavenged NO3− and biogenic sulfur species more efficiently than rain. Mean dry, wet, and sea fog deposition fluxes for atmospheric total inorganic N (TIN; i.e. NH4+ + NO3−) over the subarctic western North Pacific Ocean were estimated to be 4.9 μmol m−2 d−1, 33 μmol m−2 d−1, and 7.8 μmol m−2 d−1, respectively. While NO3− was the dominant inorganic N species in dry and sea fog deposition, inorganic N supplied to surface waters by wet deposition was predominantly by NH4+. The contribution of dry, wet, and sea fog deposition to total deposition flux for TIN (46 μmol m−2 d−1) were 11%, 72%, and 17%, respectively, suggesting that ignoring sea fog deposition would lead to underestimate of the total influx of atmospheric inorganic N into the subarctic western North Pacific Ocean, especially in summer periods.


Sign in / Sign up

Export Citation Format

Share Document