scholarly journals Hydrogel-Based Biomaterials Engineered from Natural-Derived Polysaccharides and Proteins for Hemostasis and Wound Healing

Author(s):  
Junyao Cheng ◽  
Jianheng Liu ◽  
Ming Li ◽  
Zhongyang Liu ◽  
Xing Wang ◽  
...  

Rapid and effective hemostasis is of great importance to improve the quality of treatment and save lives in emergency, surgical practice, civilian, and military settings. Traditional hemostatic materials such as tourniquets, gauze, bandages, and sponges have shown limited efficacy in the management of uncontrollable bleeding, resulting in widespread interest in the development of novel hemostatic materials and techniques. Benefiting from biocompatibility, degradability, injectability, tunable mechanical properties, and potential abilities to promote coagulation, wound healing, and anti-infection, hydrogel-based biomaterials, especially those on the basis of natural polysaccharides and proteins, have been increasingly explored in preclinical studies over the past few years. Despite the exciting research progress and initial commercial development of several hemostatic hydrogels, there is still a significant distance from the desired hemostatic effect applicable to clinical treatment. In this review, after elucidating the process of biological hemostasis, the latest progress of hydrogel biomaterials engineered from natural polysaccharides and proteins for hemostasis is discussed on the basis of comprehensive literature review. We have focused on the preparation strategies, physicochemical properties, hemostatic and wound-healing abilities of these novel biomaterials, and highlighted the challenges that needed to be addressed to achieve the transformation of laboratory research into clinical practice, and finally presented future research directions in this area.

2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Jessica Beltrán ◽  
Mireya S. García-Vázquez ◽  
Jenny Benois-Pineau ◽  
Luis Miguel Gutierrez-Robledo ◽  
Jean-François Dartigues

An opportune early diagnosis of Alzheimer’s disease (AD) would help to overcome symptoms and improve the quality of life for AD patients. Research studies have identified early manifestations of AD that occur years before the diagnosis. For instance, eye movements of people with AD in different tasks differ from eye movements of control subjects. In this review, we present a summary and evolution of research approaches that use eye tracking technology and computational analysis to measure and compare eye movements under different tasks and experiments. Furthermore, this review is targeted to the feasibility of pioneer work on developing computational tools and techniques to analyze eye movements under naturalistic scenarios. We describe the progress in technology that can enhance the analysis of eye movements everywhere while subjects perform their daily activities and give future research directions to develop tools to support early AD diagnosis through analysis of eye movements.


2021 ◽  
Vol 1036 ◽  
pp. 20-31
Author(s):  
Jun Jie Ye ◽  
Zhi Rong He ◽  
Kun Gang Zhang ◽  
Yu Qing Du

Ti-Ni based shape memory alloys (SMAs) are of excellent shape memory effect, superelasticity and damping property. These properties of the alloys can be fully displayed only after proper heat treatment. In this paper, the research progresses of the effect of the heat treatment on the microstructure, phase composition, phase transformation behaviors and shape memory properties in Ti-Ni based SMAs are reviewed, the correlation influence mechanism is summarized, and the future research directions in this field are pointed out. It is expected to provide reference for the development of Ti-Ni based SMAs and their heat treatment technologies.


2018 ◽  
Vol 6 (40) ◽  
pp. 10672-10686 ◽  
Author(s):  
Qing Zhang ◽  
Huanli Dong ◽  
Wenping Hu

This article places special focus on the recent research progress of the EP method in synthesizing CPs. In particular, their potential applications as 2D CPs are summarized, with a basic introduction of the EP method, its use in synthesizing CPs as well as the promising applications of the obtained CPs in different fields. Discussions of current challenges in this field and future research directions are also given.


Author(s):  
Jennifer J. Neakrase ◽  
H. Prentice Baptiste ◽  
Ashley N. Ryan ◽  
Elsa Q. Villa

One of the goals of science education is to ensure that the discipline of science is accessible to all individuals. By many organizations this has been termed “Science for All,” and those who promote this idea also advocate the connection to science literacy. Teaching science in the online environment has been one way to offer science content to many different individuals, who do not necessarily need to be in the same location. Discourse in the science classroom is framed under situated cognition theory, whereby interactions between individuals are part of the normal culture of the classroom. For science knowledge to be adequately constructed by a student these interactions must be meaningful ones. This is especially important in an online science course where typically learning occurs through interactions between the students and the instructor, the students with one another, and within the individual themselves. As part of these online interactions, good reflective practice includes the different forms of feedback and the quality of this feedback. However, even with quality reflective interactions, there are barriers to science concept construction in an online environment. These barriers are discussed, and future research directions are suggested based on this review.


Friction ◽  
2020 ◽  
Author(s):  
Kuniaki Dohda ◽  
Masahito Yamamoto ◽  
Chengliang Hu ◽  
Laurent Dubar ◽  
Kornel F. Ehmann

AbstractGalling phenomena in metal forming not only affect the quality of the engineered surfaces but also the success or failure of the manufacturing operation itself. This paper reviews the different galling conditions in sheet and bulk metal forming processes along with their evolution and the effects of temperature on galling. A group of anti-galling methods employed to prevent galling defects are also presented in detail. The techniques for quantitatively measuring galling are introduced, and the related prediction models, including friction, wear, and galling growth models, are presented to better understand the underlying phenomena. Galling phenomena in other processes similar to those occurring in metal forming are also examined to suggest different ways of further studying galling in metal forming. Finally, future research directions for the study of galling in metal forming are suggested.


2019 ◽  
Vol 90 (5-6) ◽  
pp. 710-727 ◽  
Author(s):  
Yiwei Ouyang ◽  
Xianyan Wu

In order to review the most effective ways to improve the mechanical properties of composite T-beams and further increase their application potential, research progress on the mechanical properties of textile structural composite T-beams was summarized based on two-dimensional (2-D) ply structure composite T-beams, delamination resistance enhanced 2-D ply structure T-beams, and three-dimensional (3-D) textile structural composite T-beams; future research directions for composite T-beams were also considered. From existing literature, the research status and application bottlenecks of 2-D ply structure composite T-beams and T-beams with enhanced delamination resistance performance were described, as were the specific classification, research progress, and mechanical properties of 3-D textile structural composite T-beams. In addition, the superior mechanical properties of 3-D braided textile structural composite T-beams, specifically their application potential based on excellent delamination resistance capacity, were highlighted. Future research directions for composite T-beams, that is, the applications of high-performance raw materials, locally enhanced design, structural blending enhancement, functionality, and intelligence are presented in this review.


2019 ◽  
Vol 3 (2) ◽  
pp. 36 ◽  
Author(s):  
Dilip Birdja ◽  
Elif Özcan

In this paper, the sleep phenomenon is considered in relation to critical care soundscapes with the intention to inform hospital management, medical device producers and policy makers regarding the complexity of the issue and possible modes of design interventions. We propose a comprehensive strategy based on soundscape design approach that facilitates a systematic way of tackling the auditory quality of critical care settings in favor of better patient sleep experience. Future research directions are presented to tackle the knowledge deficits in designing for critical care soundscapes that cater for patient sleep. The need for scientifically-informed design interventions for improving patient sleep experience in critical care is highlighted. The value of the soundscape design approach for resolving other sound-induced problems in critical care and how the approach allows for patient-centred innovation that is beyond the immediate sound issue are further discussed.


Author(s):  
Miri Scharf

Relatively little research has examined the grandparent–adult grandchild relationship, although these relationships might play a more significant role than in the past, possibly impacting grandchildren’s development and the adjustment of both parties. This chapter reviews different theoretical perspectives related to this bond and presents the special flavor of this bond during emerging adulthood resulting from the different developmental trajectories of grandparents and grandchildren that mutually influence one another. Empirical findings demonstrating large variation both within and between families regarding frequency of contact and quality of the relations are presented, as well as various contextual and demographic variables that might mediate and moderate these variations. Finally, the importance of studying this bond, future research directions, and possible implications are discussed.


Author(s):  
Don W. Morgan

Chapter 21 presents and synthesizes research findings related to various aspects of locomotor economy during the childhood and adolescent years. Because the majority of research has been conducted on walking and running, the material presented in this chapter will focus exclusively on these modes of gait. It concludes by proposing future research directions to guide sport scientists, coaches, and clinicians in their quest to understand the factors responsible for efficient locomotion in children, improve the athletic performance of youngsters, and enhance the functional mobility and quality of life of physically challenged youth.


Electronics ◽  
2018 ◽  
Vol 7 (11) ◽  
pp. 309 ◽  
Author(s):  
Hind Bangui ◽  
Said Rakrak ◽  
Said Raghay ◽  
Barbora Buhnova

Cloud computing has significantly enhanced the growth of the Internet of Things (IoT) by ensuring and supporting the Quality of Service (QoS) of IoT applications. However, cloud services are still far from IoT devices. Notably, the transmission of IoT data experiences network issues, such as high latency. In this case, the cloud platforms cannot satisfy the IoT applications that require real-time response. Yet, the location of cloud services is one of the challenges encountered in the evolution of the IoT paradigm. Recently, edge cloud computing has been proposed to bring cloud services closer to the IoT end-users, becoming a promising paradigm whose pitfalls and challenges are not yet well understood. This paper aims at presenting the leading-edge computing concerning the movement of services from centralized cloud platforms to decentralized platforms, and examines the issues and challenges introduced by these highly distributed environments, to support engineers and researchers who might benefit from this transition.


Sign in / Sign up

Export Citation Format

Share Document