scholarly journals The Roles of CircRNAs in Regulating Muscle Development of Livestock Animals

Author(s):  
Zhenguo Yang ◽  
Tianle He ◽  
Qingyun Chen

The muscle growth and development of livestock animals is a complex, multistage process, which is regulated by many factors, especially the genes related to muscle development. In recent years, it has been reported frequently that circular RNAs (circRNAs) are involved widely in cell proliferation, cell differentiation, and body development (including muscle development). However, the research on circRNAs in muscle growth and development of livestock animals is still in its infancy. In this paper, we briefly introduce the discovery, classification, biogenesis, biological function, and degradation of circRNAs and focus on the molecular mechanism and mode of action of circRNAs as competitive endogenous RNAs in the muscle development of livestock and poultry. In addition, we also discuss the regulatory mechanism of circRNAs on muscle development in livestock in terms of transcription, translation, and mRNAs. The purpose of this article is to discuss the multiple regulatory roles of circRNAs in the process of muscle development in livestock, to provide new ideas for the development of a new co-expression regulation network, and to lay a foundation for enriching livestock breeding and improving livestock economic traits.

2020 ◽  
Vol 20 (1) ◽  
pp. 3-10
Author(s):  
Patricia Adu-Asiamah ◽  
Qiying Leng ◽  
Haidong Xu ◽  
Jiahui Zheng ◽  
Zhihui Zhao ◽  
...  

AbstractCircular RNAs (circRNAs) have been identified in the skeletal muscle of numerous species of animals. Their abundance, diversity, and their dynamic expression patterns have been revealed in various developmental stages and physiological conditions in skeletal muscles. Recently, studies have made known that circRNAs widely participate in muscle cell proliferation and differentiation. They are also involved in other life processes such as functioning as microRNA (miRNA) sponges, regulators of splicing and transcription, and modifiers of parental gene expression with emerging pieces of evidence indicating a high chance of playing a vital role in several cells and tissues, especially the muscles. Other research has emphatically stated that the growth and development of skeletal muscle are regulated by proteins as well as non-coding RNAs, which involve circRNAs. Therefore, circRNAs have been considered significant biological regulators for understanding the molecular mechanisms of myoblasts. Here, we discuss how circRNAs are abundantly expressed in muscle (myoblast) and their critical roles in growth and development.


2021 ◽  
Vol 8 ◽  
Author(s):  
Weiwei Miao ◽  
Zeqiang Ma ◽  
Zhanyang Tang ◽  
Lin Yu ◽  
Siqi Liu ◽  
...  

Luchuan pig is a typical obese pig breed in China, and the diameter and area of its longissimus dorsi muscle fibers are significantly smaller than those of Duroc (lean) pig. Skeletal muscle fiber characteristics are related to meat quality of livestock. There is a significant correlation between the quality of different breeds of pork and the characteristics of muscle fiber, which is an important factor affecting the quality of pork. The diameter and area of muscle fibers are related to muscle growth and development. Therefore, we used the assay for transposase-accessible chromatin using sequencing (ATAC-seq) and RNA sequencing (RNA-seq) analysis to investigate the potential mechanism underlying the difference in skeletal muscle growth and development between the two types of pigs. First, transposase-accessible chromatin was analyzed to map the landscape of open chromatin regions and transcription factor binding sites. We identified several transcription factors that potentially affected muscle growth and development, including TFAP4, MAX, NHLH1, FRX5, and TGIF1. We also found that transcription factors with basic helix-loop-helix structures had a preference for binding to genes involved in muscle development. Then, by integrating ATAC-seq and RNA-seq, we found that the Wnt signaling pathway, the mTOR signaling pathway, and other classical pathways regulate skeletal muscle development. In addition, some pathways that might regulate skeletal muscle growth, such as parathyroid hormone synthesis, secretion, and action, synthesis and degradation of ketone bodies, and the thyroid hormone signaling pathway, which were significantly enriched. After further study, we identified a number of candidate genes (ASNS, CARNS1, G0S2, PPP1R14C, and SH3BP5) that might be associated with muscle development. We also found that the differential regulation of chromatin openness at the level of some genes was contrary to the differential regulation at the level of transcription, suggesting that transcription factors and transcriptional repressors may be involved in the regulation of gene expression. Our study provided an in-depth understanding of the mechanism behind the differences in muscle fibers from two species of pig and provided an important foundation for further research on improving the quality of pork.


2019 ◽  
Vol 98 (1) ◽  
Author(s):  
Mary C Gauvin ◽  
Sambhu M Pillai ◽  
Sarah A Reed ◽  
John R Stevens ◽  
Maria L Hoffman ◽  
...  

Abstract Poor maternal nutrition during gestation can have immediate and life-long negative effects on offspring growth and health. In livestock, this leads to reduced product quality and increased costs of production. Based on previous evidence that both restricted- and overfeeding during gestation decrease offspring muscle growth and alter metabolism postnatally, we hypothesized that poor maternal nutrition during gestation would reduce the growth and development of offspring muscle prenatally, reduce the number of myogenic progenitor cells, and result in changes in the global expression of genes involved in prenatal muscle development and function. Ewes were fed a control (100% NRC)-, restricted (60% NRC)-, or overfed (140% NRC) diet beginning on day 30 of gestation until days 45, 90, and 135 of gestation or until parturition. At each time point fetuses and offspring (referred to as CON, RES, and OVER) were euthanized and longissimus dorsi (LM), semitendinosus (STN), and triceps brachii (TB) were collected at each time point for histological and RNA-Seq analysis. In fetuses and offspring, we did not observe an effect of diet on cross-sectional area (CSA), but CSA increased over time (P < 0.05). At day 90, RES and OVER had reduced secondary:primary muscle fiber ratios in LM (P < 0.05), but not in STN and TB. However, in STN and TB percent PAX7-positive cells were decreased compared with CON (P < 0.05). Maternal diet altered LM mRNA expression of 20 genes (7 genes downregulated in OVER and 2 downregulated in RES compared with CON; 5 downregulated in OVER compared with RES; false discovery rate (FDR)-adj. P < 0.05). A diet by time interaction was not observed for any genes in the RNA-Seq analysis; however, 2,205 genes were differentially expressed over time between days 90 and 135 and birth (FDR-adj. P < 0.05). Specifically, consistent with increased protein accretion, changes in muscle function, and increased metabolic activity during myogenesis, changes in genes involved in cell cycle, metabolic processes, and protein synthesis were observed during fetal myogenesis. In conclusion, poor maternal nutrition during gestation contributes to altered offspring muscle growth during early fetal development which persists throughout the fetal stage. Based on muscle-type-specific effects of maternal diet, it is important to evaluate more than one type of muscle to fully elucidate the effects of maternal diet on offspring muscle development.


2021 ◽  
Vol 12 ◽  
Author(s):  
Kent M. Reed ◽  
Kristelle M. Mendoza ◽  
Juan E. Abrahante ◽  
Sandra G. Velleman ◽  
Gale M. Strasburg

Precise regulation of gene expression is critical for normal muscle growth and development. Changes in gene expression patterns caused by external stressors such as temperature can have dramatic effects including altered cellular structure and function. Understanding the cellular mechanisms that underlie muscle growth and development and how these are altered by external stressors are crucial in maintaining and improving meat quality. This study investigated circular RNAs (circRNAs) as an emerging aspect of gene regulation. We used data mining to identify circRNAs and characterize their expression profiles within RNAseq data collected from thermally challenged turkey poults of the RBC2 and F-lines. From sequences of 28 paired-end libraries, 8924 unique circRNAs were predicted of which 1629 were common to all treatment groups. Expression analysis identified significant differentially expressed circRNAs (DECs) in comparisons between thermal treatments (41 DECs) and between genetic lines (117 DECs). No intersection was observed between the DECs and differentially expressed gene transcripts indicating that the DECs are not simply the result of expression changes in the parental genes. Comparative analyses based on the chicken microRNA (miRNA) database suggest potential interactions between turkey circRNAs and miRNAs. Additional studies are needed to reveal the functional significance of the predicted circRNAs and their role in muscle development in response to thermal challenge. The DECs identified in this study provide an important framework for future investigation.


Author(s):  
Cheng-Li Liu ◽  
Guang-Xin E ◽  
Wei-Wei Ni ◽  
Xiao Wang ◽  
Shu-Zhu Cheng ◽  
...  

The myostatin (MSTN) gene is a negative regulator of animal muscle growth and development. This gene not only inhibits muscle cell growth and reduces fat accumulation but also exerts a significant effect on back fat thickness, birth weight and carcass traits. MSTN gene mutation, an important factor that influences economic traits, directly affects the growth and development of animals and consequently the quality of animal products. This paper reviews the structural and functional characteristics of the MSTN gene. The genetic variation of the MSTN gene is then compared among four domestic animals (cattle, sheep, goat and pig) and its correlation with important economic traits is analysed. The mechanism and structural characteristics of MSTN gene mutants are further discussed. This paper provides explication on the application of MSTN gene research in breeding and its importance to the advancement of animal husbandry.


2020 ◽  
Author(s):  
Ruili Liu ◽  
Xianxun Liu ◽  
Xuejin Bai ◽  
Chaozhu Xiao ◽  
Yajuan Dong

Abstract Background Black cattle are a new breed of cattle that are developed by applying modern biotechnology, such as somatic cloning, and conventional breeding methods to Luxi cattle. It is very important to study the function and regulatory mechanism of circRNAs in muscle differentiation among different breeds to improve meat quality and meat production performance and to provide new ideas for beef cattle meat quality improvements and new breed development. Therefore, the goal of this study was to sequence and identify circRNAs in muscle tissues of different breeds of cattle. We used RNA-seq to identify circRNAs in the muscles of two breeds of black cattle (Black and Luxi). Results We identified 14640 circRNAs and found 655 differentially expressed circRNAs. We also analysed the classification and characteristics of circRNAs in muscle tissue. GO and KEGG analyses were used on the parental genes of circRNAs. They were mainly involved in a variety of biological processes, such as muscle fibre development, smooth muscle cell proliferation, bone system morphogenesis, tight junctions and the MAPK, AMPK and mTOR signalling pathways. In addition, we used miRanda to predict the interactions between 15 circRNAs and 12 miRNAs. Based on the above assays, we identified circRNAs (circ0001048, circ0001103, circ0001159, circ0003719, circ0003794, circ0003721, circ0003720, circ0001519, circ0001530, circ0005060, circ0006589, circ0000181, circ0000190, circ0010558, circ0010577) that may play an important role in the regulation of muscle growth and development. Conclusion Our results provide more information about circRNAs regulating muscle development in different breeds of cattle and lay a solid foundation for future experiments.


2020 ◽  
Author(s):  
Mingming Song ◽  
Mengjie Chen ◽  
Kongwei Huang ◽  
Dandan Zhong ◽  
Yaling Chen ◽  
...  

Abstract Background Muscle development is a precisely orchestrated and complex process, and circular RNAs (circRNAs) has been demonstrated to play important roles in skeletal muscle growth and development. However, the regulatory functions of circRNA during buffalo muscle developmental processes have not been understood.Results In this study, Ribo-Zero RNA-Seq was performed to investigate the circRNAs expression profiles of proliferated and differentiated buffalo myoblasts. A stringent set of 3,142 circRNAs was finally characterized. Comparing the expression profiles of circRNAs revealed that 110 circRNAs were expressed differentially during myoblast differentiation. We focused on the role of a candidate circRNA, which was named circPICALM based on its host gene PICALM, and was highly (but differentially) expressed in proliferated and differentiated myoblasts. Flow cytometry, EdU incorporation, and Western blotting assays demonstrate that circPICALM promoted myoblasts proliferation and inhibited cells apoptosis. Moreover, overexpression of circPICALM promoted the differentiation of primary buffalo myoblasts. Moreover, circPICALM in vivo stimulated skeletal muscle regeneration in cardiotoxin-induced muscle injury. The RNA pulldown results showed that circPICALM could capture TUBA1B protein, revealing that circPICALM might exert its biological function by binding TUBA1B protein. Conclusions These results demonstrate that the novel non-coding regulator circPICALM induces myoblast differentiation and skeletal muscle regeneration.


2019 ◽  
Vol 99 (4) ◽  
pp. 867-880
Author(s):  
Xiaohong Guo ◽  
Wanfeng Zhang ◽  
Meng Li ◽  
Pengfei Gao ◽  
Wei Hei ◽  
...  

From the perspectives of promoting individual growth and development, increasing pork yield, and improving feed utilization, it is desirable to screen candidate genes underlying pig muscle growth and regulation. In this study, we investigated transcriptome differences at 1, 90, and 180 d of age in Large White and Mashen pigs, characterized differentially expressed genes (DEGs), and screened candidate genes affecting skeletal muscle growth and development. RNA-seq was applied to analyze the transcriptome of the longissimus dorsi (LD) in the two breeds. In LD samples from the two breeds at three growth stages, 7215, 6332, 237, 3935, 3404, and 846 DEGs were obtained for L01 vs. L90, L01 vs. L180, L90 vs. L180, MS01 vs. MS90, MS01 vs. MS180, and MS90 vs. MS180, respectively. Significant tendencies in DEG expression could be grouped into eight profiles. Based on the functional analysis of DEGs, 16 candidate genes related to skeletal muscle growth and development were identified, including PCK2, GNAS, ADCY2, PRKAB1, PRKAB2, PRKAG1, PRKAG2, PHKA1, PHKA2, PHKG1, PHKG2, ITPR3, IGF1R, FGFR4, FGF1, and FGF18. The results of this study thus provide a theoretical basis for the mechanisms and candidate genes underlying skeletal muscle development in pigs.


2021 ◽  
Vol 22 (18) ◽  
pp. 10056
Author(s):  
Lifang Liu ◽  
Yulong Chen ◽  
Jinghan Diao ◽  
Lifei Luo ◽  
Zexia Gao

Circular RNAs (circRNAs), a novel class of endogenous RNAs, have been recognized to play important roles in the growth of animals. However, the regulatory mechanism of circRNAs on fish muscle growth is still unclear. In this study, we performed whole transcriptome analysis of skeletal muscles from two populations with different growth rates (fast-growing and slow-growing) of blunt snout bream (Megalobrama amblycephala), an important fish species for aquaculture. The selected circRNAs were validated by qPCR and Sanger sequencing. Pairs of circRNA–miRNA–mRNA networks were constructed with the predicted differentially expressed (DE) pairs, which revealed regulatory roles in muscle myogenesis and hypertrophy. As a result, a total of 445 circRNAs were identified, including 42 DE circRNAs between fast-growing (FG) and slow-growing (SG) groups. Many of these DE circRNAs were related with aminoglycan biosynthetic and metabolic processes, cytokinetic processes, and the adherens junction pathway. The functional prediction results showed that novel_circ_0001608 and novel_circ_0002886, competing to bind with dre-miR-153b-5p and dre-miR-124-6-5p, might act as competing endogenous RNAs (ceRNAs) to control MamblycephalaGene14755 (pik3r1) and MamblycephalaGene10444 (apip) level, respectively, thus playing an important regulatory role in muscle growth. Overall, these results will not only help us to further understand the novel RNA transcripts in M. amblycephala, but also provide new clues to investigate the potential mechanism of circRNAs regulating fish growth and muscle development.


Animals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 835
Author(s):  
Mohammadreza Mohammadabadi ◽  
Farhad Bordbar ◽  
Just Jensen ◽  
Min Du ◽  
Wei Guo

Farm-animal species play crucial roles in satisfying demands for meat on a global scale, and they are genetically being developed to enhance the efficiency of meat production. In particular, one of the important breeders’ aims is to increase skeletal muscle growth in farm animals. The enhancement of muscle development and growth is crucial to meet consumers’ demands regarding meat quality. Fetal skeletal muscle development involves myogenesis (with myoblast proliferation, differentiation, and fusion), fibrogenesis, and adipogenesis. Typically, myogenesis is regulated by a convoluted network of intrinsic and extrinsic factors monitored by myogenic regulatory factor genes in two or three phases, as well as genes that code for kinases. Marker-assisted selection relies on candidate genes related positively or negatively to muscle development and can be a strong supplement to classical selection strategies in farm animals. This comprehensive review covers important (candidate) genes that regulate muscle development and growth in farm animals (cattle, sheep, chicken, and pig). The identification of these genes is an important step toward the goal of increasing meat yields and improves meat quality.


Sign in / Sign up

Export Citation Format

Share Document