scholarly journals Identification of Novel Metabolism-Associated Subtypes for Pancreatic Cancer to Establish an Eighteen-Gene Risk Prediction Model

Author(s):  
Yang Gao ◽  
Enchong Zhang ◽  
Xiang Fei ◽  
Lingming Kong ◽  
Peng Liu ◽  
...  

Pancreatic cancer (PanC) is an intractable malignancy with a high mortality. Metabolic processes contribute to cancer progression and therapeutic responses, and histopathological subtypes are insufficient for determining prognosis and treatment strategies. In this study, PanC subtypes based on metabolism-related genes were identified and further utilized to construct a prognostic model. Using a cohort of 171 patients from The Cancer Genome Atlas (TCGA) database, transcriptome data, simple nucleotide variants (SNV), and clinical information were analyzed. We divided patients with PanC into metabolic gene-enriched and metabolic gene-desert subtypes. The metabolic gene-enriched subgroup is a high-risk subtype with worse outcomes and a higher frequency of SNVs, especially in KRAS. After further characterizing the subtypes, we constructed a risk score algorithm involving multiple genes (i.e., NEU2, GMPS, PRIM2, PNPT1, LDHA, INPP4B, DPYD, PYGL, CA12, DHRS9, SULT1E1, ENPP2, PDE1C, TPH1, CHST12, POLR3GL, DNMT3A, and PGS1). We verified the reproducibility and reliability of the risk score using three validation cohorts (i.e., independent datasets from TCGA, Gene Expression Omnibus, and Ensemble databases). Finally, drug prediction was completed using a ridge regression model, yielding nine candidate drugs for high-risk patients. These findings support the classification of PanC into two metabolic subtypes and further suggest that the metabolic gene-enriched subgroup is associated with worse outcomes. The newly established risk model for prognosis and therapeutic responses may improve outcomes in patients with PanC.

2020 ◽  
Author(s):  
Rui Zhang ◽  
Chen Chen ◽  
Qi Li ◽  
Jialu Fu ◽  
Dong Zhang ◽  
...  

Abstract Background: Immune-related genes (IRGs) play a crucial role in the initiation and progression of cholangiocarcinoma (CCA). However, immune signatures have rarely been used to predict prognosis of CCA. The aim of this study was to construct a novel model for CCA to predict survival based on IRGs expression data.Methods: The gene expression profiles and clinical data of CCA patients from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database were integrated to establish and validate prognostic IRG signatures. Differentially expressed immune-related genes were screened. Univariate and multivariate Cox analysis were performed to identify prognostic IRGs, and the risk model that predicts outcomes was constructed. Furthermore, receiver operating characteristic (ROC) and Kaplan-Meier curve were plotted to examine predictive accuracy of the model, and a nomogram was constructed based on IRGs signature, combining with other clinical characteristics. Finally, CIBERSORT was used to analyze the association of immune cells infiltration with risk score.Results: We identified that 223 IRGs were significantly dysregulated in patients with CCA, among which five IRGs (AVPR1B, CST4, TDGF1, RAET1E and IL9R) were identified as robust indicators for overall survival (OS), and a prognostic model was built based on the IRGs signature. Meanwhile, patients with high risk had worse OS in training and validation cohort, and the area under the ROC was 0.898 and 0.846, respectively. Nomogram demonstrated that immune risk score contributed much more points than other clinicopathological variables, with a C-index of 0.819 (95% CI, 0.727-0.911). Finally, we found that IRGs signature was positively correlated with the proportion of CD8+ T cells, neurophils and T gamma delta, while negatively with that of CD4+ memory resting T cells.Conclusions: We established and validated an effective five IRGs-based prediction model for CCA, which could accurately classify patients into groups with low and high risk of poor prognosis.


2021 ◽  
Vol 11 ◽  
Author(s):  
Fen Liu ◽  
Zongcheng Yang ◽  
Lixin Zheng ◽  
Wei Shao ◽  
Xiujie Cui ◽  
...  

BackgroundGastric cancer is a common gastrointestinal malignancy. Since it is often diagnosed in the advanced stage, its mortality rate is high. Traditional therapies (such as continuous chemotherapy) are not satisfactory for advanced gastric cancer, but immunotherapy has shown great therapeutic potential. Gastric cancer has high molecular and phenotypic heterogeneity. New strategies for accurate prognostic evaluation and patient selection for immunotherapy are urgently needed.MethodsWeighted gene coexpression network analysis (WGCNA) was used to identify hub genes related to gastric cancer progression. Based on the hub genes, the samples were divided into two subtypes by consensus clustering analysis. After obtaining the differentially expressed genes between the subtypes, a gastric cancer risk model was constructed through univariate Cox regression, least absolute shrinkage and selection operator (LASSO) regression and multivariate Cox regression analysis. The differences in prognosis, clinical features, tumor microenvironment (TME) components and immune characteristics were compared between subtypes and risk groups, and the connectivity map (CMap) database was applied to identify potential treatments for high-risk patients.ResultsWGCNA and screening revealed nine hub genes closely related to gastric cancer progression. Unsupervised clustering according to hub gene expression grouped gastric cancer patients into two subtypes related to disease progression, and these patients showed significant differences in prognoses, TME immune and stromal scores, and suppressive immune checkpoint expression. Based on the different expression patterns between the subtypes, we constructed a gastric cancer risk model and divided patients into a high-risk group and a low-risk group based on the risk score. High-risk patients had a poorer prognosis, higher TME immune/stromal scores, higher inhibitory immune checkpoint expression, and more immune characteristics suitable for immunotherapy. Multivariate Cox regression analysis including the age, stage and risk score indicated that the risk score can be used as an independent prognostic factor for gastric cancer. On the basis of the risk score, we constructed a nomogram that relatively accurately predicts gastric cancer patient prognoses and screened potential drugs for high-risk patients.ConclusionsOur results suggest that the 7-gene signature related to tumor progression could predict the clinical prognosis and tumor immune characteristics of gastric cancer.


2020 ◽  
Vol 11 ◽  
Author(s):  
Xin Qiu ◽  
Qin-Han Hou ◽  
Qiu-Yue Shi ◽  
Hai-Xing Jiang ◽  
Shan-Yu Qin

BackgroundIntratumoral oxidative stress (OS) has been associated with the progression of various tumors. However, OS has not been considered a candidate therapeutic target for pancreatic cancer (PC) owing to the lack of validated biomarkers.MethodsWe compared gene expression profiles of PC samples and the transcriptome data of normal pancreas tissues from The Cancer Genome Atlas (TCGA) and Genome Tissue Expression (GTEx) databases to identify differentially expressed OS genes in PC. PC patients’ gene profile from the Gene Expression Omnibus (GEO) database was used as a validation cohort.ResultsA total of 148 differentially expressed OS-related genes in PC were used to construct a protein-protein interaction network. Univariate Cox regression analysis, least absolute shrinkage, selection operator analysis revealed seven hub prognosis-associated OS genes that served to construct a prognostic risk model. Based on integrated bioinformatics analyses, our prognostic model, whose diagnostic accuracy was validated in both cohorts, reliably predicted the overall survival of patients with PC and cancer progression. Further analysis revealed significant associations between seven hub gene expression levels and patient outcomes, which were validated at the protein level using the Human Protein Atlas database. A nomogram based on the expression of these seven hub genes exhibited prognostic value in PC.ConclusionOur study provides novel insights into PC pathogenesis and provides new genetic markers for prognosis prediction and clinical treatment personalization for PC patients.


2021 ◽  
Author(s):  
wenhao wang ◽  
Longjun Yang ◽  
Zhong Lu ◽  
Xiumei Sun ◽  
Jin Liu ◽  
...  

Abstract BackgroundLung adenocarcinoma (LUAD) is a tumor with high incidence rate and high mortality rate. Previous studies have found that autophagy plays a vital role in tumorigenesis and biological progression. The aim of our research is to screen and analyze autophagy-related genes (ATGs) using bioinformatics technology, then establish a gene expression model for predicting the prognosis of LUAD patients. MethodsDifferentially expressed ATGs in LUAD and normal tissues were screened by The Cancer Genome Atlas (TCGA) dataset. We applied Go and KEGG enrichment analysis of ATGs for identifying the relevant signaling pathways. Finally, the ATGs related with survival were assessed using univariate and multivariate COX regression analyses. This project was analyzed by R software. ResultsA total of 232 ATGs were obtained in LUAD. Subsequently, 30 ATGs were screened out as genes associated with prognosis. GO analysis revealed that the 30 differently expressed ATGs (DE-ATGs) were enriched in intrinsic apoptotic signaling pathway, macroautophagy, and neuron death. In addition, KEGG analysis revealed that the DE-ATGs were associated with autophagy (animal), ErbB signaling pathway and IL-17 signaling pathway. Then, the risk score model was established by the 8 ATGs (ATG4A, CCR2, MBTPS2, APOL1, ERO1A, SPHK1, ST13 and ITGA6), and LUAD patients were divided into high-risk and low-risk groups with the risk score. The risk score was significantly related to overall survival and prognosis by univariate and multivariate analysis (P < 0.001). The survival time of low-risk score patients was showed by the cumulative curve that was obviously longer than high-risk score patients (P< 0.001). Finally, the correlation of the autophagy-related risk characteristics and multiple clinical parameters was analyzed. ConclusionA prognostic signature and nomogram based on 8 ATGs was constructed. This research provides a new direction for the prognosis evaluation and guides the potential treatment strategies for LUAD.


2020 ◽  
Author(s):  
Rui Zhang ◽  
Chen Chen ◽  
Qi Li ◽  
Jialu Fu ◽  
Dong Zhang ◽  
...  

Abstract Background: Immune-related genes (IRGs) play a crucial role in the initiation and progression of cholangiocarcinoma (CCA). However, immune signatures have rarely been used to predict prognosis of CCA. The aim of this study was to construct a novel model for CCA to predict survival based on IRGs expression data. Methods: The gene expression profiles and clinical data of CCA patients from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database were integrated to establish and validate prognostic IRG signatures. Differentially expressed immune-related genes were screened. Univariate and multivariate Cox analysis were performed to identify prognostic IRGs, and the risk model that predicts outcomes was constructed. Furthermore, receiver operating characteristic (ROC) and Kaplan-Meier curve were plotted to examine predictive accuracy of the model, and a nomogram was constructed based on IRGs signature, combining with other clinical characteristics. Finally, CIBERSORT was used to analyze the association of immune cells infiltration with risk score. Results: We identified that 223 IRGs were significantly dysregulated in patients with CCA, among which five IRGs (AVPR1B, CST4, TDGF1, RAET1E and IL9R) were identified as robust indicators for overall survival (OS), and a prognostic model was built based on the IRGs signature. Meanwhile, patients with high risk had worse OS in training and validation cohort, and the area under the ROC was 0.898 and 0.846, respectively. Nomogram demonstrated that immune risk score contributed much more points than other clinicopathological variables, with a C-index of 0.819 (95% CI, 0.727-0.911). Finally, we found that IRGs signature was positively correlated with the proportion of CD8+ T cells, neurophils and T gamma delta, while negatively with that of CD4+ memory resting T cells. Conclusions: We established and validated an effective five IRGs-based prediction model for CCA, which could accurately classify patients into groups with low and high risk of poor prognosis.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Jianfeng Ding ◽  
Xiaobo He ◽  
Xiao Cheng ◽  
Guodong Cao ◽  
Bo Chen ◽  
...  

Abstract Background Pancreatic cancer (PAC) is one of the most devastating cancer types with an extremely poor prognosis, characterized by a hypoxic microenvironment and resistance to most therapeutic drugs. Hypoxia has been found to be one of the factors contributing to chemoresistance in PAC, but also a major driver of the formation of the tumor immunosuppressive microenvironment. However, the method to identify the degree of hypoxia in the tumor microenvironment (TME) is incompletely understood. Methods The mRNA expression profiles and corresponding clinicopathological information of PAC patients were downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database, respectively. To further explore the effect of hypoxia on the prognosis of patients with PAC as well as the tumor immune microenvironment, we established a hypoxia risk model and divided it into high- and low-risk groups in line with the hypoxia risk score. Results We established a hypoxia risk model according to four hypoxia-related genes, which could be used to demonstrate the immune microenvironment in PAC and predict prognosis. Moreover, the hypoxia risk score can act as an independent prognostic factor in PAC, and a higher hypoxia risk score was correlated with poorer prognosis in patients as well as the immunosuppressive microenvironment of the tumor. Conclusions In summary, we established and validated a hypoxia risk model that can be considered as an independent prognostic indicator and reflected the immune microenvironment of PAC, suggesting the feasibility of hypoxia-targeted therapy for PAC patients.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Congyu Shi ◽  
Shan Liu ◽  
Xudong Tian ◽  
Xiaoyi Wang ◽  
Pan Gao

Abstract Background Tumor protein p53 (TP53) is the most frequently mutated gene in head and neck squamous cell carcinoma (HNSC), and TP53 mutations are associated with inhibited immune signatures and poor prognosis. We established a TP53 mutation associated risk score model to evaluate the prognosis and therapeutic responses of patients with HNSC. Methods Differentially expressed genes between patients with and without TP53 mutations were determined by using data from the HNSC cohort in The Cancer Genome Atlas database. Patients with HNSC were divided into high- and low-risk groups based on a prognostic risk score that was generated from ten TP53 mutation associated genes via the multivariate Cox regression model. Results TP53 was the most common mutant gene in HNSC, and TP53 mutations were associated with immunogenic signatures, including the infiltration of immune cells and expression of immune-associated genes. Patients in the high-risk group had significantly poorer overall survival than those in the low-risk group. The high-risk group showed less response to anti-programmed cell death protein 1 (PD-1) therapy but high sensitivity to some chemotherapies. Conclusion The risk score based on our TP53 mutation model was associated with poorer survival and could act as a specific predictor for assessing prognosis and therapeutic response in patients with HNSC.


2021 ◽  
Vol 11 ◽  
Author(s):  
Zhuolun Sun ◽  
Changying Jing ◽  
Xudong Guo ◽  
Mingxiao Zhang ◽  
Feng Kong ◽  
...  

Kidney renal clear cell carcinoma (KIRC) has long been identified as a highly immune-infiltrated tumor. However, the underlying role of pyroptosis in the tumor microenvironment (TME) of KIRC remains poorly described. Herein, we systematically analyzed the prognostic value, role in the TME, response to ICIs, and drug sensitivity of pyroptosis-related genes (PRGs) in KIRC patients based on The Cancer Genome Atlas (TCGA) database. Cluster 2, by consensus clustering for 24 PRGs, presented a poor prognosis, likely because malignancy-related hallmarks were remarkably enriched. Additionally, we constructed a prognostic prediction model that discriminated well between high- and low-risk patients and was further confirmed in external E-MTAB-1980 cohort and HSP cohort. By further analyzing the TME based on the risk model, higher immune cell infiltration and lower tumor purity were found in the high-risk group, which presented a poor prognosis. Patients with high risk scores also exhibited higher ICI expression, indicating that these patients may be more prone to profit from ICIs. The sensitivity to anticancer drugs that correlated with model-related genes was also identified. Collectively, the pyroptosis-related prognosis risk model may improve prognostic information and provide directions for current research investigations on immunotherapeutic strategies for KIRC patients.


2021 ◽  
Vol 1 (3) ◽  
pp. 77-87
Author(s):  
Gong Xiao ◽  
Qiongjing Yuan ◽  
Wei Wang

Background: Multiple myeloma (MM) is one of the most common cancers of the blood system. N6-methyladenosine (m6A) plays an important role in cancer progression. We aimed to investigate the prognostic relevance of the m6A score in multiple myeloma through a series of bioinformatics analyses. Methods: The microarray dataset GSE4581 and GSE57317 used in this study were downloaded from the Gene Expression Omnibus (GEO) database. The m6A score was calculated using the GSVA package. The Random forests, univariate Cox regression analysis and Lasso analyses were performed for the differentially expressed genes (DEGs). Kaplan–Meier analysis and an ROC curve were used to diagnose the effectiveness of the model. Results: The GSVA R software package was used to predict the function. A total of 21 m6A genes were obtained, and 286 DEGs were identified between high and low m6A score groups. The risk model was constructed and composed of PRX, LBR, RB1, FBXL19-AS1, ARSK, MFAP3L, SLC44A3, UNC119 and SHCBP1. Functional analysis of risk score showed that with the increase in the risk score, Activated CD4 T cells, Memory B cells and Type 2 T helper cells were highly infiltrated. Conclusions: Immune checkpoints such as HMGB1, TGFB1, CXCL9 and HAVCR2 were significantly positively correlated with the risk score. We believe that the m6A score has a certain prognostic value in multiple myeloma.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Xin Zhao ◽  
Jiaxuan Zou ◽  
Ziwei Wang ◽  
Ge Li ◽  
Yi Lei

Background. Gastric cancer (GC) is believed to be one of the most common digestive tract malignant tumors. The prognosis of GC remains poor due to its high malignancy, high incidence of metastasis and relapse, and lack of effective treatment. The constant progress in bioinformatics and molecular biology techniques has given rise to the discovery of biomarkers with clinical value to predict the GC patients’ prognosis. However, the use of a single gene biomarker can hardly achieve the satisfactory specificity and sensitivity. Therefore, it is urgent to identify novel genetic markers to forecast the prognosis of patients with GC. Materials and Methods. In our research, data mining was applied to perform expression profile analysis of mRNAs in the 443 GC patients from The Cancer Genome Atlas (TCGA) cohort. Genes associated with the overall survival (OS) of GC were identified using univariate analysis. The prognostic predictive value of the risk factors was determined using the Kaplan-Meier survival analysis and multivariate analysis. The risk scoring system was built in TCGA dataset and validated in an independent Gene Expression Omnibus (GEO) dataset comprising 300 GC patients. Based on the median of the risk score, GC patients were grouped into high-risk and low-risk groups. Results. We identified four genes (GMPPA, GPC3, NUP50, and VCAN) that were significantly correlated with GC patients’ OS. The high-risk group showed poor prognosis, indicating that the risk score was an effective predictor for the prognosis of GC patients. Conclusion. The signature consisting of four glycolysis-related genes could be used to forecast the GC patients’ prognosis.


Sign in / Sign up

Export Citation Format

Share Document