scholarly journals Microbiome-Mediated Immune Signaling in Inflammatory Bowel Disease and Colorectal Cancer: Support From Meta-omics Data

Author(s):  
Molly Pratt ◽  
Jessica D. Forbes ◽  
Natalie C. Knox ◽  
Charles N. Bernstein ◽  
Gary Van Domselaar

Chronic intestinal inflammation and microbial dysbiosis are hallmarks of colorectal cancer (CRC) and inflammatory bowel diseases (IBD), such as Crohn’s disease and ulcerative colitis. However, the mechanistic relationship between gut dysbiosis and disease has not yet been fully characterized. Although the “trigger” of intestinal inflammation remains unknown, a wealth of evidence supports the role of the gut microbiome as a mutualistic pseudo-organ that significantly influences intestinal homeostasis and is capable of regulating host immunity. In recent years, culture-independent methods for assessing microbial communities as a whole (termed meta-omics) have grown beyond taxonomic identification and genome characterization (metagenomics) into new fields of research that collectively expand our knowledge of microbiomes. Metatranscriptomics, metaproteomics, and metabolomics are meta-omics techniques that aim to describe and quantify the functional activity of the gut microbiome. Uncovering microbial metabolic contributions in the context of IBD and CRC using these approaches provides insight into how the metabolic microenvironment of the GI tract shapes microbial community structure and how the microbiome, in turn, influences the surrounding ecosystem. Immunological studies in germ-free and wild-type mice have described several host-microbiome interactions that may play a role in autoinflammation. Chronic colitis is a precursor to CRC, and changes in the gut microbiome may be an important link triggering the neoplastic process in chronic colitis. In this review, we describe several microbiome-mediated mechanisms of host immune signaling, such as short-chain fatty acid (SCFA) and bile acid metabolism, inflammasome activation, and cytokine regulation in the context of IBD and CRC, and discuss the supporting role for these mechanisms by meta-omics data.

2018 ◽  
Vol 31 (03) ◽  
pp. 168-178 ◽  
Author(s):  
Peter Higgins ◽  
Ryan Stidham

AbstractPatients with inflammatory bowel disease (IBD) are at significantly increased risk of colorectal cancer (CRC), principally resulting from the pro-neoplastic effects of chronic intestinal inflammation. Epidemiologic studies continue to highlight the increased risk of CRC in IBD. However, the incidence has declined over the past 30 years, attributed to both successful CRC-surveillance programs and improved control of mucosal inflammation. Risk factors that further increase the risk of IBD-related CRC include disease duration, extent and severity, the presence of inflammatory pseudopolyps, coexistent primary sclerosing cholangitis, and a family history of CRC. All major professional societies agree that IBD-CRC surveillance should occur more frequently than in the general population. Yet, guidelines and consensus statements differ on the surveillance schedule and preferred method of surveillance. Improved sensitivity to previously “invisible” flat dysplastic lesions using high definition and chromoendoscopy methods has resulted in many guidelines abandoning requirements for random untargeted biopsies of the colon. While colonic dysplasia remains a worrisome finding, and several clinical scenarios remain best addressed by total proctocolectomy due to concerns of synchronous undetected lesions and the unpredictable tempo of progression to malignancy, better detection techniques have also increased opportunities for endoscopic resection of dysplastic lesions that can be clearly delineated. Finally, the expanding armamentarium of medical options in IBD, including anti-tumor necrosis factor and anti-adhesion biologic therapies, have substantially improved our ability to control severe inflammation and likely reduce the risk of CRC over time.


Nutrients ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1780
Author(s):  
Jean-Frédéric LeBlanc ◽  
Jonathan P. Segal ◽  
Lucia Maria de Campos Braz ◽  
Ailsa L. Hart

The gut microbiome has been implicated in a range of diseases and there is a rapidly growing understanding of this ecosystem’s importance in inflammatory bowel disease. We are yet to identify a single microbe that causes either ulcerative colitis (UC) or pouchitis, however, reduced microbiome diversity is increasingly recognised in active UC. Manipulating the gut microbiome through dietary interventions, prebiotic and probiotic compounds and faecal microbiota transplantation may expand the therapeutic landscape in UC. Specific diets, such as the Mediterranean diet or diet rich in omega-3 fatty acids, may reduce intestinal inflammation or potentially reduce the risk of incident UC. This review summarises our knowledge of gut microbiome therapies in UC and pouchitis.


2019 ◽  
Vol 5 ◽  
pp. 18-30 ◽  
Author(s):  
Jonathan C. Valdez ◽  
Bradley W. Bolling

Chronic intestinal inflammation, occurring in inflammatory bowel diseases (IBD), is associated with compromised intestinal barrier function. Inflammatory cytokines disrupt tight junctions and increase paracellular permeability of luminal antigens. Thus, chronic intestinal barrier dysfunction hinders the resolution of inflammation. Dietary approaches may help mitigate intestinal barrier dysfunction and chronic inflammation. A growing body of work in rodent models of colitis has demonstrated that berry consumption inhibits chronic intestinal inflammation. Berries are a rich dietary source of polyphenolic compounds, particularly anthocyanins. However, berry anthocyanins have limited bioavailability and are extensively metabolized by the gut microbiota and host tissue. This review summarizes the literature regarding the beneficial functions of anthocyanin-rich berries in treating and preventing IBD. Here, we will establish the role of barrier function in the pathogenesis of IBD and how dietary anthocyanins and their known microbial catabolites modulate intestinal barrier function.


F1000Research ◽  
2019 ◽  
Vol 8 ◽  
pp. 997 ◽  
Author(s):  
Derek M. Lin ◽  
Henry C. Lin

Bacteriophages are the most prominent members of the gut microbiome, outnumbering their bacterial hosts by a factor of 10. Phages are bacteria-specific viruses that are gaining attention as highly influential regulators of the gut bacterial community. Dysregulation of the gut bacterial community contributes to dysbiosis, a microbiome disorder characterized by compositional and functional changes that contribute to disease. A role for phages in gut microbiome dysbiosis is emerging with evidence that the gut phage community is altered in dysbiosis-associated disorders such as colorectal cancer and inflammatory bowel disease. Several recent studies have linked successful fecal microbiota transplantation to uptake of the donor’s gut phage community, offering some insight into why some recipients respond to treatment whereas others do not. Here, we review the literature supporting a role for phages in mediating the gut bacterial community, giving special attention to Western diet dysbiosis as a case study to demonstrate a theoretical phage-based mechanism for the establishment and maintenance of dysbiosis.


Author(s):  
Giorgos Bamias ◽  
Theresa T Pizarro ◽  
Fabio Cominelli

Abstract Intestinal fibrosis is a late-stage phenotype of inflammatory bowel disease (IBD), which underlies most of the long-term complications and surgical interventions in patients, particularly those with Crohn’s disease. Despite these issues, antifibrotic therapies are still scarce, mainly due to the current lack of understanding concerning the pathogenetic mechanisms that mediate fibrogenesis in patients with chronic intestinal inflammation. In the current review, we summarize recent evidence regarding the cellular and molecular factors of innate and adaptive immunity that are considered critical for the initiation and amplification of extracellular matrix deposition and stricture formation. We focus on the role of cytokines by dissecting the pro- vs antifibrotic components of the immune response, while taking into consideration their temporal association to the progressive stages of the natural history of IBD. We critically present evidence from animal models of intestinal fibrosis and analyze inflammation-fibrosis interactions that occur under such experimental scenarios. In addition, we comment on recent findings from large-scale, single-cell profiling of fibrosis-relevant populations in IBD patients. Based on such evidence, we propose future potential targets for antifibrotic therapies to treat patients with IBD.


2019 ◽  
Vol 316 (6) ◽  
pp. G692-G700 ◽  
Author(s):  
Emmeline Salameh ◽  
Mathieu Meleine ◽  
Guillaume Gourcerol ◽  
Jean-Claude do Rego ◽  
Jean-Luc do Rego ◽  
...  

Inflammatory bowel diseases (IBD) are characterized by repetition of flares and remission periods leading to chronic postinflammatory sequelae. Among postinflammatory sequelae, one-third of patients with IBD are suffering from functional symptoms or psychological comorbidities that persist during remission. The aim of our study was to assess functional and behavioral sequelae of chronic colitis in rats with quiescent intestinal inflammation. Chronic colitis was induced by a weekly intrarectal injection of increasing concentrations of trinitrobenzene sulfonic acid (TNBS) for 3 wk (15–45 mg of TNBS) in 30 rats, whereas the control rats ( n = 24) received the vehicle. At 50 days post-TNBS, visceral sensitivity was assessed by visceromotor response to colorectal distension, and transient receptor potential vanilloid type 1 (TRPV1) expression was also quantified in the colon and dorsal root ganglia. Barrier function and inflammatory response were assessed by studying intestinal permeability, tight junction protein, myeloperoxidase activity, histological score, and cytokine production (IL-6, IL-10, and TNF-α). Anxiety behavioral tests were performed from 50 to 64 days after the last TNBS injection. Chronic TNBS induced 1) a visceral hypersensitivity ( P = 0.03), 2) an increased colon weight-to-length ratio ( P = 0.01), 3) higher inflammatory and fibrosis scores ( P = 0.0390 and P = 0.0016, respectively), and 4) a higher colonic IL-6 and IL-10 production ( P = 0.008 and P = 0.005, respectively) compared with control rats. Intestinal permeability, colonic production of TNF-α, myeloperoxidase activity, and TRPV1 expression did not differ among groups. Chronic TNBS increased anxiety-related behavior in the open-field test and in the acoustic stress test. In conclusion, chronic colitis induced functional sequelae such as visceral hypersensitivity and increased anxiety with a low-grade intestinal inflammation. Development of a representative animal model will allow defining novel therapeutic approaches to achieve a better management of IBD-related sequelae.NEW & NOTEWORTHY Patients with inflammatory bowel diseases have impaired quality of life. Therapeutic progress to control mucosal inflammation provides us an opportunity to develop novel approaches to understand mechanisms behind postinflammatory sequelae. We used a chronic colitis model to study long-term sequelae on visceral pain, gut barrier function, and psychological impact. Chronic colitis induced functional symptoms and increased anxiety in the remission period. It might define novel therapeutic approaches to achieve a better inflammatory bowel disease-related sequelae management.


2019 ◽  
Vol 25 (38) ◽  
pp. 5191-5217 ◽  
Author(s):  
Hai-tao Xiao ◽  
Bo Wen ◽  
Xiang-chun Shen ◽  
Zhao-xiang Bian

Inflammatory bowel disease (IBD) is an uncontrolled chronic inflammatory intestinal disorder, which requires medications for long-term therapy. Facing the challenges of severe side effects and drug resistance of conventional medications, to develop the strategies meet the stringent safety and effectiveness in the long-term treatment are urgent in the clinics. In this regard, a growing body of evidence confirms plant-sourced phenols, such as flavonoids, catechins, stilbenes, coumarins, quinones, lignans, phenylethanoids, cannabinoid phenols, tannins, phenolic acids and hydroxyphenols, exert potent protective benefits with fewer undesirable effects in conditions of acute or chronic intestinal inflammation through improvement of colonic oxidative and pro-inflammatory status, preservation of the epithelial barrier function and modulation of gut microbiota. In this review, the great potential of plant-sourced phenols and their action mechanisms for the treatment or prevention of IBD in recent research are summarized, which may help further development of new preventive/adjuvant regimens for IBD.


2010 ◽  
Vol 207 (8) ◽  
pp. 1573-1577 ◽  
Author(s):  
Mark Asquith ◽  
Fiona Powrie

Inflammatory bowel disease (IBD) is characterized by dysregulated immune responses to the intestinal microbiota, and by chronic intestinal inflammation. Several recent studies demonstrate the importance of innate microbial recognition by immune and nonimmune cells in the gut. Paradoxically, either diminished or exacerbated innate immune signaling may trigger the breakdown of intestinal homeostasis, leading to IBD and colitis-associated cancer (CAC). This dichotomy may reflect divergent functional roles for immune sensing in intestinal epithelial cells and leukocytes, which may vary with distinct disease mechanisms.


Sign in / Sign up

Export Citation Format

Share Document