scholarly journals Fundamental Mechanisms of the Cell Death Caused by Nitrosative Stress

Author(s):  
Fulin Wang ◽  
Qiuhuan Yuan ◽  
Fengying Chen ◽  
Jiaojiao Pang ◽  
Chang Pan ◽  
...  

Nitrosative stress, as an important oxygen metabolism disorder, has been shown to be closely associated with cardiovascular diseases, such as myocardial ischemia/reperfusion injury, aortic aneurysm, heart failure, hypertension, and atherosclerosis. Nitrosative stress refers to the joint biochemical reactions of nitric oxide (NO) and superoxide (O2–) when an oxygen metabolism disorder occurs in the body. The peroxynitrite anion (ONOO–) produced during this process can nitrate several biomolecules, such as proteins, lipids, and DNA, to generate 3-nitrotyrosine (3-NT), which further induces cell death. Among these, protein tyrosine nitration and polyunsaturated fatty acid nitration are the most studied types to date. Accordingly, an in-depth study of the relationship between nitrosative stress and cell death has important practical significance for revealing the pathogenesis and strategies for prevention and treatment of various diseases, particularly cardiovascular diseases. Here, we review the latest research progress on the mechanisms of nitrosative stress-mediated cell death, primarily involving several regulated cell death processes, including apoptosis, autophagy, ferroptosis, pyroptosis, NETosis, and parthanatos, highlighting nitrosative stress as a unique mechanism in cardiovascular diseases.

2021 ◽  
Vol 12 ◽  
Author(s):  
Guo-liang Zhang ◽  
Ming-li Sun ◽  
Xin-an Zhang

Loss of cardiomyocytes is a vital manifestation and predisposing factor of many cardiovascular diseases and will eventually lead to heart failure (HF). On the other hand, adult mammalian cardiomyocytes have a very limited regenerative capacity and cannot achieve self-repair of the myocardium after injury. Therefore, it is necessary to promote regeneration and repair of the myocardium through effective intervention means. Exercise plays an important role in the prevention and rehabilitation of cardiovascular diseases. Exercise can improve ischemia-reperfusion injury, reduce the size of the infarcted area, and improve the quality of life of patients. In addition, exercise has also been shown to be able to elevate the proliferative potential of adult cardiomyocytes and promote myocardial regeneration. Studies have shown that newly formed cardiomyocytes in adult mammalian hearts are mainly derived from pre-existing cardiomyocytes. By regulating various cytokines, transcription factors, and microRNAs (miRNAs), exercise can promote the dedifferentiation and proliferation of pre-existing cardiomyocytes to form new cardiomyocytes. Therefore, this paper focuses on the recent research progress of exercise-induced adult cardiomyocyte proliferation and explores its potential molecular mechanism.


2021 ◽  
Vol 8 ◽  
Author(s):  
Huilin Hu ◽  
Yunqing Chen ◽  
Lele Jing ◽  
Changlin Zhai ◽  
Liang Shen

Ferroptosis is an iron-dependent cell death, which is characterized by iron overload and lipid peroxidation. Ferroptosis is distinct from apoptosis, necroptosis, autophagy, and other types of cell death in morphology and function. Ferroptosis is regulated by a variety of factors and controlled by several mechanisms, including mitochondrial activity and metabolism of iron, lipid, and amino acids. Accumulating evidence shows that ferroptosis is closely related to a majority of cardiovascular diseases (CVDs), including cardiomyopathy, myocardial infarction, ischemia/reperfusion injury, heart failure, and atherosclerosis. This review summarizes the current status of ferroptosis and discusses ferroptosis as a potential therapeutic target for CVDs.


Author(s):  
Anyi Wang ◽  
Shanshan Yue ◽  
Ankang Peng ◽  
Rong Qi

: Cardiovascular diseases and fatty liver disease have become the leading causes of death in modern society. However, currently existing drugs do not solve all issues related to these diseases; thus, it is expected that more potential drugs for clinical use will be developed. Undeniably, natural products have attracted increasing attention. It is of great significance to identify effective active monomer components for drug discovery and disease prevention. As a pure natural product, Agathis dammara (AD) has antioxidant, hypolipidemic, hypoglycemic, antitumor and anti-inflammatory activities. However, at present, there are few reports regarding the effects of AD on chronic inflammatory cardiovascular diseases such as aneurysm, atherosclerosis, myocardial ischemia-reperfusion injury, and cardiac hypertrophy and liver diseases such as fatty liver disease. AD and products derived from it have very broad application prospects for cardiovascular diseases and fatty liver disease.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Yi Yu ◽  
Yuan Yan ◽  
Fanglin Niu ◽  
Yajun Wang ◽  
Xueyi Chen ◽  
...  

AbstractFerroptosis, a recently identified and iron-dependent cell death, differs from other cell death such as apoptosis, necroptosis, pyroptosis, and autophagy-dependent cell death. This form of cell death does not exhibit typical morphological and biochemical characteristics, including cell shrinkage, mitochondrial fragmentation, nuclear condensation. The dysfunction of lipid peroxide clearance, the presence of redox-active iron as well as oxidation of polyunsaturated fatty acid (PUFA)-containing phospholipids are three essential features of ferroptosis. Iron metabolism and lipid peroxidation signaling are increasingly recognized as central mediators of ferroptosis. Ferroptosis plays an important role in the regulation of oxidative stress and inflammatory responses. Accumulating evidence suggests that ferroptosis is implicated in a variety of cardiovascular diseases such as atherosclerosis, stroke, ischemia-reperfusion injury, and heart failure, indicating that targeting ferroptosis will present a novel therapeutic approach against cardiovascular diseases. Here, we provide an overview of the features, process, function, and mechanisms of ferroptosis, and its increasingly connected relevance to oxidative stress, inflammation, and cardiovascular diseases.


Author(s):  
Fangze Huang ◽  
Ronghua Yang ◽  
Zezhou Xiao ◽  
Yu Xie ◽  
Xuefeng Lin ◽  
...  

Cardiovascular diseases, including cardiomyopathy, myocardial infarction, myocardial ischemia/reperfusion injury, heart failure, vascular injury, stroke, and arrhythmia, are correlated with cardiac and vascular cell death. Ferroptosis is a novel form of non-apoptotic regulated cell death which is characterized by an iron-driven accumulation of lethal lipid hydroperoxides. The initiation and execution of ferroptosis are under the control of several mechanisms, including iron metabolism, glutamine metabolism, and lipid peroxidation. Recently, emerging evidence has demonstrated that ferroptosis can play an essential role in the development of various cardiovascular diseases. Recent researches have shown the ferroptosis inhibitors, iron chelators, genetic manipulations, and antioxidants can alleviate myocardial injury by blocking ferroptosis pathway. In this review, we systematically described the mechanisms of ferroptosis and discussed the role of ferroptosis as a novel therapeutic strategy in the treatment of cardiovascular diseases.


2021 ◽  
Vol 8 ◽  
Author(s):  
Zhu Yuan ◽  
Weiqiang Huang

Long non-coding RNAs (lncRNAs) are non-coding RNAs with lengths >200 nt and are involved in the occurrence and development of cardiovascular diseases (CVDs). Exosomes are secreted and produced by various cell types. Exosome contents include various ncRNAs, proteins and lipids. Exosomes are also important mediators of intercellular communication. The proportion of lncRNAs in exosomes is low, but increasing evidence suggests that exosomal lncRNAs play important roles in CVDs. We focused on research progress in exosomal lncRNAs in atherosclerosis, myocardial infarction, myocardial ischemia-reperfusion injury, cardiac angiogenesis, cardiac aging, rheumatic heart disease, and chronic kidney disease combined with CVD. The potential diagnostic and therapeutic effects of exosomal lncRNAs in CVDs are summarized based on preclinical studies involving animal and cell models and circulating exosomes in clinical patients. Finally, the challenges and possible prospects of exosomes and exosomal lncRNAs in clinical applications related to CVD are discussed.


2019 ◽  
Author(s):  
Shupeng Shi ◽  
Haoran Zhang ◽  
Wenzhe Gao ◽  
Moussa Ide Nasser ◽  
Jie Shen ◽  
...  

Ischemia-reperfusion injury (IRI) occurred when an organ lost its blood supply in a short time, and then the perfusion was restored automatically or iatrogenically, leading to a burst of reactive oxygen species (ROS) from mitochondria. It is common in the clinic, and lead to deterioration, even death, so an exploratory examination of the mechanism of ischemia-reperfusion injury is of great significance. Among the most common and fatal types of IR in myocardial tissue, myocardial IRI is one of the most fatal diseases in the modern world. The cellular and molecular mechanisms of IRI mainly include calcium overload, oxidative stress, endoplasmic reticulum (ER) stress, mitochondrial dysfunction, energy metabolic disorders, neutrophil infiltration, cardiomyocyte autophagy, and apoptosis, etc. The main pathogenesis of IRI is programmed cell death, of which apoptosis is the most deeply studied processes. However, pyroptosis is a highly inflammatory form of programmed cell death (PCD), which depends on the activation of the caspase cascade and inflammatory mediators, which have been thought to be involved in the processes of IRI. Ptosis has been referred to as a pattern. PCD with apoptosis characteristics Necrosis. It’s stimulated by molecular signaling pathways similar to apoptosis, mainly including Caspase. The research progress in recent years is presented in this review. Among them, myocardial tissue and so on provide a theoretical basis for the burning organ system in I/R injury and provide theoretical practice for the clinical research of reducing ischemia-reperfusion injury.


2019 ◽  
Author(s):  
Shupeng Shi ◽  
Haoran Zhang ◽  
Wenzhe Gao ◽  
Moussa Ide Nasser ◽  
Jie Shen ◽  
...  

Ischemia-reperfusion injury (IRI) occurred when an organ lost its blood supply in a short time, and then the perfusion was restored automatically or iatrogenically, leading to a burst of reactive oxygen species (ROS) from mitochondria. It is common in the clinic, and lead to deterioration, even death, so an exploratory examination of the mechanism of ischemia-reperfusion injury is of great significance. Among the most common and fatal types of IR in myocardial tissue, myocardial IRI is one of the most fatal diseases in the modern world. The cellular and molecular mechanisms of IRI mainly include calcium overload, oxidative stress, endoplasmic reticulum (ER) stress, mitochondrial dysfunction, energy metabolic disorders, neutrophil infiltration, cardiomyocyte autophagy, and apoptosis, etc. The main pathogenesis of IRI is programmed cell death, of which apoptosis is the most deeply studied processes. However, pyroptosis is a highly inflammatory form of programmed cell death (PCD), which depends on the activation of the caspase cascade and inflammatory mediators, which have been thought to be involved in the processes of IRI. Ptosis has been referred to as a pattern. PCD with apoptosis characteristics Necrosis. It’s stimulated by molecular signaling pathways similar to apoptosis, mainly including Caspase. The research progress in recent years is presented in this review. Among them, myocardial tissue and so on provide a theoretical basis for the burning organ system in I/R injury and provide theoretical practice for the clinical research of reducing ischemia-reperfusion injury.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Bumin Xie ◽  
Yuan Guo

AbstractFerroptosis is a newly identified form of nonapoptotic regulated cell death characterized by iron-dependent accumulation of lipid reactive oxygen species. Morphologically and biochemically different from known types of cell death and apoptosis, ferroptosis promotes nervous system diseases, renal failure, ischemia–reperfusion injury, and the treatment of tumors. It could be induced by several mechanisms, including inhibition of glutathione peroxidase 4, lack of cysteine, and peroxidation of polyunsaturated fatty acids, but could be inhibited by iron chelators, lipophilic antioxidants, and some specific inhibitors. Ferroptosis is found to be closely related to the tumorigenesis, invasion, and metastasis of tumors. Noncoding RNAs (ncRNAs), including long noncoding RNAs (lncRNAs), microRNAs, and circular RNAs, do not encode proteins. NcRNAs are found to be capable of regulating the molecular mechanism of ferroptosis in tumor cells post transcription. Ferroptosis provides a new method for cancer treatment. Although several studies have confirmed the important role of ferroptosis in cancer treatment, its specific affecting mechanism is unclear. Here we reviewed the molecular mechanism of ferroptosis in tumor cells and the relationship between ferroptosis and the three important ncRNAs.


Author(s):  
Dongdong Zheng ◽  
Ming Huo ◽  
Bo Li ◽  
Weitie Wang ◽  
Hulin Piao ◽  
...  

Exosomes are small vesicles (30–150 nm in diameter) enclosed by a lipid membrane bilayer, secreted by most cells in the body. They carry various molecules, including proteins, lipids, mRNA, and other RNA species, such as long non-coding RNA, circular RNA, and microRNA (miRNA). miRNAs are the most numerous cargo molecules in the exosome. They are endogenous non-coding RNA molecules, approximately 19–22-nt-long, and important regulators of protein biosynthesis. Exosomes can be taken up by neighboring or distant cells, where they play a role in post-transcriptional regulation of gene expression by targeting mRNA. Exosomal miRNAs have diverse functions, such as participation in inflammatory reactions, cell migration, proliferation, apoptosis, autophagy, and epithelial–mesenchymal transition. There is increasing evidence that exosomal miRNAs play an important role in cardiovascular health. Exosomal miRNAs are widely involved in the occurrence and development of cardiovascular diseases, such as atherosclerosis, acute coronary syndrome, heart failure (HF), myocardial ischemia reperfusion injury, and pulmonary hypertension. In this review, we present a systematic overview of the research progress into the role of exosomal miRNAs in cardiovascular diseases, and present new ideas for the diagnosis and treatment of cardiovascular diseases.


Sign in / Sign up

Export Citation Format

Share Document