scholarly journals MCM3AP-AS1: An Indispensable Cancer-Related LncRNA

Author(s):  
Xiao Yu ◽  
Qingyuan Zheng ◽  
Qiyao Zhang ◽  
Shuijun Zhang ◽  
Yuting He ◽  
...  

Long non-coding RNAs (lncRNAs) are a class of RNA molecules with transcripts longer than 200 nucleotides that have no protein-coding ability. MCM3AP-AS1, a novel lncRNA, is aberrantly expressed in human cancers. It is significantly associated with many clinical characteristics, such as tumor size, tumor-node-metastasis (TNM) stage, and pathological grade. Additionally, it considerably promotes or suppresses tumor progression by controlling the biological functions of cells. MCM3AP-AS1 is a promising biomarker for cancer diagnosis, prognosis evaluation, and treatment. In this review, we briefly summarized the published studies on the expression, biological function, and regulatory mechanisms of MCM3AP-AS1. We also discussed the clinical applications of MCM3AP-AS1 as a biomarker.

2021 ◽  
Vol 34 (Supplement_1) ◽  
Author(s):  
Siyuan Luan ◽  
Yushang Yang ◽  
Shouyue Zhang ◽  
Xiaoxi Zeng ◽  
Xin Xiao ◽  
...  

Abstract   Long non-coding RNAs (lncRNAs), a type of transcriptional products with more than 200 nucleotides in length, have been less characterized compared to protein-coding RNAs so far. However, it is increasingly evident that lncRNAs are key players involved in multiple genetic and epigenetic activities during the carcinogenesis of neoplastic diseases. Currently, accumulating data have pointed out the close connection between lncRNAs and esophageal carcinoma (EC), shedding light on further unravelling the complexity of lncRNAs and EC. Methods In this review, we thoroughly collect the evidence regarding original studies on EC-related lncRNAs by searching in MEDLINE/PubMed, Embase and WOS/SCI. We especially focus on summarizing EC-related lncRNAs based upon more updated evidence, and further discuss their different features from various perspectives, including regulatory mechanisms, functional roles in cancer hallmarks, as well as potential diagnostic and therapeutic applications, which would together reveal the complexity of lncRNAs and EC for potential clinical applications. Results We discuss over thirty EC-related lncRNAs in total, most of which function as oncogenes that promote cancer development, while the others function as tumor suppressors. Regulatory mechanisms included sponging miRNAs, direct interaction with proteins, and exosome visicle-based intercellular communication. Based upon these modes of actions, lncRNAs play multiple roles in cancer hallmarks such as uncontrolled cell growth, evasion of programmed cell death, invasion and metastasis. Moreover, lncRNAs packaged in exosomes have unique potency to serve as diagnostic biomarkers; some lncRNAs show great potential to predict patients' chemical resistance and may be crucial targets to improve chemoradiotherapy and targeted therapy. Conclusion Over the past few years, the research of EC-related lncRNAs maintain obviously rapid development, yet further exploration of exact mechanisms and clinical applications that lncRNAs can offer need to be done. Indeed, LncRNAs hold the promise of being applied in multiple clinical scenarios, especially early diagnosis of EC, improvement of sensitivity to chemotherapy/radiotherapy, and development of small-molecule targeted drugs.


2020 ◽  
Vol 21 (10) ◽  
pp. 3711
Author(s):  
Melina J. Sedano ◽  
Alana L. Harrison ◽  
Mina Zilaie ◽  
Chandrima Das ◽  
Ramesh Choudhari ◽  
...  

Genome-wide RNA sequencing has shown that only a small fraction of the human genome is transcribed into protein-coding mRNAs. While once thought to be “junk” DNA, recent findings indicate that the rest of the genome encodes many types of non-coding RNA molecules with a myriad of functions still being determined. Among the non-coding RNAs, long non-coding RNAs (lncRNA) and enhancer RNAs (eRNA) are found to be most copious. While their exact biological functions and mechanisms of action are currently unknown, technologies such as next-generation RNA sequencing (RNA-seq) and global nuclear run-on sequencing (GRO-seq) have begun deciphering their expression patterns and biological significance. In addition to their identification, it has been shown that the expression of long non-coding RNAs and enhancer RNAs can vary due to spatial, temporal, developmental, or hormonal variations. In this review, we explore newly reported information on estrogen-regulated eRNAs and lncRNAs and their associated biological functions to help outline their markedly prominent roles in estrogen-dependent signaling.


2016 ◽  
Vol 2 (1) ◽  
pp. 5
Author(s):  
Yu Cuiyun ◽  
Qian Ning ◽  
Zhi-Ping Li ◽  
Wen Huang ◽  
Jia Yu ◽  
...  

<p align="left">Non-coding RNAs (ncRNA) are RNA molecules without protein coding functions owing to the lack of an open reading frame (ORF). Based on the length, ncRNAs can be divided into long and short ncRNAs; short ncRNAs include miRNAs and piRNAs. Hepatocellular carcinoma (HCC) is among the most frequent forms of cancer worldwide and its incidence is increasing rapidly. Studies have found that ncRNAs are likely to play a crucial role in a variety of biological processes including the pathogenesis and progression of HCC. In this review, we summarized the regulation mechanism and biological functions of ncRNAs in HCC with respect to its application in HCC diagnosis, therapy and prognosis.</p>


Open Medicine ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. 481-490
Author(s):  
Hui Zhang ◽  
Miao Song ◽  
Jianing Guo ◽  
Junbing Ma ◽  
Min Qiu ◽  
...  

Abstract Non-coding ribonucleic acids (ncRNAs) are a diverse group of RNA molecules that are mostly not translated into proteins after transcription, including long non-coding RNAs (lncRNAs) with longer than 200 nucleotides non-coding transcripts and microRNAs (miRNAs) which are only 18–22 nucleotides. As families of evolutionarily conserved ncRNAs, lncRNAs activate and repress genes via a variety of mechanisms at both transcriptional and translational levels, whereas miRNAs regulate protein-coding gene expression mainly through mRNA silencing. ncRNAs are widely involved in biological functions, such as proliferation, differentiation, migration, angiogenesis, and apoptosis. Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease with a poor prognosis. The etiology of IPF is still unclear. Increasing evidence shows the close correlations between the development of IPF and aberrant expressions of ncRNAs than thought previously. In this study, we provide an overview of ncRNAs participated in pathobiology of IPF, seeking the early diagnosis biomarker and aiming for potential therapeutic applications for IPF.


Author(s):  
Hongying Zhao ◽  
Jian Shi ◽  
Yunpeng Zhang ◽  
Aimin Xie ◽  
Lei Yu ◽  
...  

Abstract Long non-coding RNAs (lncRNAs) are associated with human diseases. Although lncRNA–disease associations have received significant attention, no online repository is available to collect lncRNA-mediated regulatory mechanisms, key downstream targets, and important biological functions driven by disease-related lncRNAs in human diseases. We thus developed LncTarD (http://biocc.hrbmu.edu.cn/LncTarD/ or http://bio-bigdata.hrbmu.edu.cn/LncTarD), a manually-curated database that provides a comprehensive resource of key lncRNA–target regulations, lncRNA-influenced functions, and lncRNA-mediated regulatory mechanisms in human diseases. LncTarD offers (i) 2822 key lncRNA–target regulations involving 475 lncRNAs and 1039 targets associated with 177 human diseases; (ii) 1613 experimentally-supported functional regulations and 1209 expression associations in human diseases; (iii) important biological functions driven by disease-related lncRNAs in human diseases; (iv) lncRNA–target regulations responsible for drug resistance or sensitivity in human diseases and (v) lncRNA microarray, lncRNA sequence data and transcriptome data of an 11 373 pan-cancer patient cohort from TCGA to help characterize the functional dynamics of these lncRNA–target regulations. LncTarD also provides a user-friendly interface to conveniently browse, search, and download data. LncTarD will be a useful resource platform for the further understanding of functions and molecular mechanisms of lncRNA deregulation in human disease, which will help to identify novel and sensitive biomarkers and therapeutic targets.


2020 ◽  
Vol 49 (D1) ◽  
pp. D962-D968 ◽  
Author(s):  
Zhao Li ◽  
Lin Liu ◽  
Shuai Jiang ◽  
Qianpeng Li ◽  
Changrui Feng ◽  
...  

Abstract Expression profiles of long non-coding RNAs (lncRNAs) across diverse biological conditions provide significant insights into their biological functions, interacting targets as well as transcriptional reliability. However, there lacks a comprehensive resource that systematically characterizes the expression landscape of human lncRNAs by integrating their expression profiles across a wide range of biological conditions. Here, we present LncExpDB (https://bigd.big.ac.cn/lncexpdb), an expression database of human lncRNAs that is devoted to providing comprehensive expression profiles of lncRNA genes, exploring their expression features and capacities, identifying featured genes with potentially important functions, and building interactions with protein-coding genes across various biological contexts/conditions. Based on comprehensive integration and stringent curation, LncExpDB currently houses expression profiles of 101 293 high-quality human lncRNA genes derived from 1977 samples of 337 biological conditions across nine biological contexts. Consequently, LncExpDB estimates lncRNA genes’ expression reliability and capacities, identifies 25 191 featured genes, and further obtains 28 443 865 lncRNA-mRNA interactions. Moreover, user-friendly web interfaces enable interactive visualization of expression profiles across various conditions and easy exploration of featured lncRNAs and their interacting partners in specific contexts. Collectively, LncExpDB features comprehensive integration and curation of lncRNA expression profiles and thus will serve as a fundamental resource for functional studies on human lncRNAs.


2018 ◽  
Vol 45 (3) ◽  
pp. 1191-1204 ◽  
Author(s):  
JingJing Wu ◽  
Swei Sunny Hann

Nasopharyngeal carcinoma (NPC) is one of the most common cancers originating in the nasopharynx and occurring at high frequency in South-eastern Asia and North Africa. Long non-coding RNAs (lncRNAs) are a class of non-protein-coding RNA molecules and key regulators of developmental, physiological, and pathological processes in humans. Emerging studies have shown that lncRNAs play critical roles in tumorgenicity and cancer prognosis. With the development of deep sequencing analyses, an extensive amount of functional lncRNAs have been discovered in nasopharyngeal carcinoma tissues and cell lines. However, the roles and mechanisms of aberrantly expressed lncRNAs in the pathogenesis of NPC are not fully understood. In this review, we briefly illustrate the concept, identification, functional characterization, and summarize recent advancements of biological functions of lncRNAs with heterogeneous mechanistic characterization and their involvement in NPC. Then, we describe individual lncRNAs that have been associated with tumorgenesis, growth, invasion, cancer stem cell differentiation, metastasis, drug resistance and discuss the strategies of their therapeutic manipulation in NPC. We also review the emerging insights into the role of lncRNAs and their potential as biomarkers and therapeutic targets for novel treatment paradigms. Finally, we highlight the up-to-date of clinical information involving lncRNAs and future directions in the linking lncRNAs to potential gene therapies, and how modifications of lncRNAs can be exploited for prevention and treatment of NPC.


Author(s):  
Jun Wu ◽  
Xin Guo ◽  
Yi Wen ◽  
Shangqing Huang ◽  
Xiaohui Yuan ◽  
...  

As the most abundant internal modification in eukaryotic cells, N6-methyladenosine (m6A) in mRNA has shown widespread regulatory roles in a variety of physiological processes and disease progressions. Circular RNAs (circRNAs) are a class of covalently closed circular RNA molecules and play an essential role in the pathogenesis of various diseases. Recently, accumulating evidence has shown that m6A modification is widely existed in circRNAs and found its key biological functions in regulating circRNA metabolism, including biogenesis, translation, degradation and cellular localization. Through regulating circRNAs, studies have shown the important roles of m6A modification in circRNAs during immunity and multiple diseases, which represents a new layer of control in physiological processes and disease progressions. In this review, we focused on the roles played by m6A in circRNA metabolism, summarized the regulatory mechanisms of m6A-modified circRNAs in immunity and diseases, and discussed the current challenges to study m6A modification in circRNAs and the possible future directions, providing a comprehensive insight into understanding m6A modification of circRNAs in RNA epigenetics.


2021 ◽  
Vol 12 ◽  
Author(s):  
Tianli Yang ◽  
Yang Li ◽  
Feng Zhao ◽  
Liuhua Zhou ◽  
Ruipeng Jia

Circular RNAs (circRNAs) are a class of novel non-coding RNAs (ncRNAs). Emerging evidence demonstrates that circRNAs play crucial roles in many biological processes by regulating linear RNA transcription, downstream gene expression and protein or peptide translation. Meanwhile, recent studies have suggested that circRNAs have the potential to be oncogenic or anti-oncogenic and play vital regulatory roles in the initiation and progression of tumors. Circular RNA Forkhead box O3 (circ-Foxo3, hsa_circ_0006404) is encoded by the human FOXO3 gene and is one of the most studied circular RNAs acting as a sponge for potential microRNAs (miRNAs) (Du et al., 2016). Previous studies have reported that circ-Foxo3 is involved in the development and tumorigenesis of a variety of cancers (bladder, gastric, acute lymphocytic leukemia, glioma, etc.). In this review, we summarize the current studies concerning circ-Foxo3 deregulation and the correlative mechanism in various human cancers. We also point out the potential clinical applications of this circRNA as a biomarker for cancer diagnosis and prognosis.


2020 ◽  
Vol 115 (5) ◽  
Author(s):  
Naisam Abbas ◽  
Filippo Perbellini ◽  
Thomas Thum

Abstract Soon after birth, the regenerative capacity of the mammalian heart is lost, cardiomyocytes withdraw from the cell cycle and demonstrate a minimal proliferation rate. Despite improved treatment and reperfusion strategies, the uncompensated cardiomyocyte loss during injury and disease results in cardiac remodeling and subsequent heart failure. The promising field of regenerative medicine aims to restore both the structure and function of damaged tissue through modulation of cellular processes and regulatory mechanisms involved in cardiac cell cycle arrest to boost cardiomyocyte proliferation. Non-coding RNAs (ncRNAs), such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) are functional RNA molecules with no protein-coding function that have been reported to engage in cardiac regeneration and repair. In this review, we summarize the current understanding of both the biological functions and molecular mechanisms of ncRNAs involved in cardiomyocyte proliferation. Furthermore, we discuss their impact on the structure and contractile function of the heart in health and disease and their application for therapeutic interventions.


Sign in / Sign up

Export Citation Format

Share Document