scholarly journals Regeneration in Stentor coeruleus

Author(s):  
Wallace F. Marshall

We often think about regeneration in terms of replacing missing structures, such as organs or tissues, with new structures generated via cell proliferation and differentiation. But at a smaller scale, single cells, themselves, are capable of regenerating when part of the cell has been removed. A classic model organism that facilitates the study of cellular regeneration in the giant ciliate Stentor coeruleus. These cells, which can grow to more than a millimeter in size, have the ability to survive after extensive wounding of their surface, and are able to regenerate missing structures. Even a small piece of a cell can regenerate a whole cell with normal geometry, in a matter of hours. Such regeneration requires cells to be able to trigger organelle biogenesis in response to loss of structures. But subcellular regeneration also relies on intracellular mechanisms to create and maintain global patterning within the cell. These mechanisms are not understood, but at a conceptual level they involve processes that resemble those seen in animal development and regeneration. Here we discuss single-celled regeneration in Stentor from the viewpoint of standard regeneration paradigms in animals. For example, there is evidence that regeneration of the oral apparatus in Stentor follows a sender-receiver model similar to crustacean eyestalk regeneration. By drawing these analogies, we find that many of the concepts already known from the study of animal-scale regeneration and development can be applied to the study of regeneration at the cellular level, such as the concepts of determination, induction, mosaic vs. regulative development, and epimorphosis vs. morphallaxis. We propose that the similarities may go beyond analogy, and that some aspects of animal development and regeneration may have evolved by exploiting pre-existing subcellular developmental strategies from unicellular ancestors.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jonas Mattisson ◽  
Marcus Danielsson ◽  
Maria Hammond ◽  
Hanna Davies ◽  
Caroline J. Gallant ◽  
...  

AbstractMosaic loss of chromosome Y (LOY) in immune cells is a male-specific mutation associated with increased risk for morbidity and mortality. The CD99 gene, positioned in the pseudoautosomal regions of chromosomes X and Y, encodes a cell surface protein essential for several key properties of leukocytes and immune system functions. Here we used CITE-seq for simultaneous quantification of CD99 derived mRNA and cell surface CD99 protein abundance in relation to LOY in single cells. The abundance of CD99 molecules was lower on the surfaces of LOY cells compared with cells without this aneuploidy in all six types of leukocytes studied, while the abundance of CD proteins encoded by genes located on autosomal chromosomes were independent from LOY. These results connect LOY in single cells with immune related cellular properties at the protein level, providing mechanistic insight regarding disease vulnerability in men affected with mosaic chromosome Y loss in blood leukocytes.


1976 ◽  
Vol 24 (1) ◽  
pp. 11-15 ◽  
Author(s):  
R C Wolley ◽  
H M Dembitzer ◽  
F Herz ◽  
K Schreiber ◽  
L G Koss

A simple and reliable method of determining the degree of dispersion of a cell suspension has been developed using the Perkin-Elmer Uni-Smear Spinner. Optimum conditions regarding rate and duration of spin, etc., were first ascertained using dispersed cell cultures including human cervical cancer cells as well as gynecologic samples. After spinning, single cells in suspension appeared as isolated cells on the slides. Cell aggregates, on the other hand, remained together. Therefore, the distribution of cells in various sized aggregates could be easily quantitated and the slides retained for future review. This method was used to evaluate the dispersing effects of trypsin, ethylenediaminetetraacetate and and syringing human on human gynecology samples obtained by routine cervical scrapes. None of the dispersion methods has, so far, produced an adequate monodispersed cell suspension without unacceptable cell loss.


2021 ◽  
Author(s):  
Aurelie Guyet ◽  
Amirah Alofi ◽  
Richard A Daniel

In Bacillus subtilis, the cell is protected from the environment by a cell envelope, which comprises of layers of peptidoglycan that maintain the cell shape and anionic teichoic acids polymers whose biological function remains unclear. In B. subtilis, loss of all Class A Penicillin-Binding Proteins (aPBPs) which function in peptidoglycan synthesis is conditionally lethal. Here we show that this lethality is associated with an alteration of the lipoteichoic acids (LTA) and the accumulation of the major autolysin LytE in the cell wall. We provide the first evidence that the length and abundance of LTA acts to regulate the cellular level of LytE. Importantly, we identify a novel function for the aminoacyl-phosphatidylglycerol synthase MprF which acts to modulate LTA biosynthesis in B. subtilis and in the pathogen Staphylococcus aureus. This finding has implications for our understanding of antimicrobial peptide resistance (particularly daptomycin) in clinically relevant bacteria and MprF-associated virulence in pathogens, such as methicillin resistant S. aureus.


2021 ◽  
Author(s):  
Zahra Eidi ◽  
Najme Khorasani ◽  
Mehdi Sadeghi

Orchestrated chemical signaling of single cells sounds to be a linchpin of emerging organization and multicellular life form. The social amoeba Dictiostelium discoiudium is a well-studied model organism to explore overall pictures of grouped behavior in developmental biology. The chemical waves secreted by aggregating Dictiostelium is a superb example of pattern formation. The waves are either circular or spiral in shape, according to the incremental population density of a self-aggregating community of individuals. Here, we revisit the spatiotemporal patterns that appear in an excitable medium due to synchronization of randomly firing individuals, but with a more parsimonies attitude. According to our model, a fraction of these individuals is refusal to amplify external stimulants. Our simulations indicate that the cells enhance the system's asymmetry and as a result, nucleate early sustainable spiral territory zones, provided that their relative population does not exceed a tolerable threshold.


2019 ◽  
Vol 62 (1) ◽  
pp. 257-264
Author(s):  
Xiang Yu ◽  
Xibi Fang ◽  
Hang Xiao ◽  
Zhihui Zhao ◽  
Steffen Maak ◽  
...  

Abstract. Acyl-CoA synthetase long-chain family member 5 (ACSL5) is a member of the acyl coenzyme A (CoA) long-chain synthase families (ACSLs), and it plays a key role in fatty acid metabolism. In this study, we proved an association between the ACSL5 gene and triglyceride metabolism at the cellular level in cattle. pBI-CMV3-ACSL5 and pGPU6/GFP/Neo-ACSL5 plasmids were constructed and transfected into bovine preadipocytes by electroporation. The expression level of ACSL5 was detected by real-time quantitative PCR and western blot. The triglyceride content was detected by a triglyceride kit. The results indicated that the expression level of ACSL5 mRNA and protein in the pBI-CMV3-ACSL5-transfected group was significantly increased compared with those in the control group. Furthermore, the pGPU6/GFP/Neo-ACSL5-transfected group was significantly decreased compared with those in the control group. A cell triglyceride test showed that overexpression or silencing of the ACSL5 gene could affect synthesis of cellular triglycerides. This study investigated the mechanism of ACSL on bovine fat deposition, and also provides a new candidate gene for meat quality traits in beef cattle.


2017 ◽  
Vol 114 (28) ◽  
pp. 7283-7288 ◽  
Author(s):  
Lucas R. Blauch ◽  
Ya Gai ◽  
Jian Wei Khor ◽  
Pranidhi Sood ◽  
Wallace F. Marshall ◽  
...  

Wound repair is a key feature distinguishing living from nonliving matter. Single cells are increasingly recognized to be capable of healing wounds. The lack of reproducible, high-throughput wounding methods has hindered single-cell wound repair studies. This work describes a microfluidic guillotine for bisecting single Stentor coeruleus cells in a continuous-flow manner. Stentor is used as a model due to its robust repair capacity and the ability to perform gene knockdown in a high-throughput manner. Local cutting dynamics reveals two regimes under which cells are bisected, one at low viscous stress where cells are cut with small membrane ruptures and high viability and one at high viscous stress where cells are cut with extended membrane ruptures and decreased viability. A cutting throughput up to 64 cells per minute—more than 200 times faster than current methods—is achieved. The method allows the generation of more than 100 cells in a synchronized stage of their repair process. This capacity, combined with high-throughput gene knockdown in Stentor, enables time-course mechanistic studies impossible with current wounding methods.


Lab on a Chip ◽  
2018 ◽  
Vol 18 (19) ◽  
pp. 2955-2965 ◽  
Author(s):  
M. Monticelli ◽  
D. S. Jokhun ◽  
D. Petti ◽  
G. V. Shivashankar ◽  
R. Bertacco

We introduce a new platform for mechanobiology based on active substrates, made of Fe-coated polymeric micropillars, capable to apply mechanical stimuli with tunable spatio-temporal profile on a cell culture.


1985 ◽  
Vol 75 (1) ◽  
pp. 357-376 ◽  
Author(s):  
J.M. Mitchison ◽  
P. Nurse

The cylindrical cells of Schizosaccharomyces pombe grow in length by extension at the ends and not the middle. At the beginning of the cell cycle, growth is restricted to the ‘old end’, which existed in the previous cycle. Later on, the ‘new end’, formed from the septum, starts to grow at a point in the cycle that we have called NETO (‘new end take-off’). Fluorescence microscopy on cells stained with Calcofluor has been used to study NETO in size mutants, in blocked cdc mutants and with different growth temperatures and media. In wild-type cells (strain 972) NETO happens at 0.34 of the cycle with a cell length of 9.5 microns. With size mutants that are smaller at division, NETO takes place at the same size (9.0-9.5 microns) but this is not achieved until later in the cycle. Another control operates in larger size mutants since NETO occurs at the same stage of the cycle (about 0.32) as in wild type but at a larger cell size. This control is probably a requirement to have completed an event in early G2, since most cdc mutant cells blocked before this point in the cycle do not show NETO whereas most of those blocked in late G2 do show it. We conclude that NETO only happens if: (1) the cell length is greater than a critical value of 9.0-9.5 microns; and (2) the cell has traversed the first 0.3-0.35 of the cycle and passed early G2. NETO is delayed in poor media, in which cell size is also reduced. Temperature has little effect on NETO under steady-state conditions, but there is a transient delay for some hours after a temperature shift. NETO is later in another wild-type strain, 132. Time-lapse photomicrography was used to follow the rates of length growth in single cells. Wild-type cells showed two linear segments during the first 75% of the cycle. There was a rate-change point (RCP), coincident with NETO, where the rate of total length extension increased by 35%. This increase was not due simply to the start of new-end growth, since old-end growth slowed down in some cells at the RCP. cdc 11.123 is a mutant in which septation and division is blocked at 35 degrees C but nuclear division continues.(ABSTRACT TRUNCATED AT 400 WORDS)


Development ◽  
1987 ◽  
Vol 100 (1) ◽  
pp. 1-12 ◽  
Author(s):  
G.M. Technau

The mechanisms leading to the commitment of a cell to a particular fate or to restrictions in its developmental potencies represent a problem of central importance in developmental biology. Both at the genetic and at the molecular level, studies addressing this topic using the fruitfly Drosophila melanogaster have advanced substantially, whereas, at the cellular level, experimental techniques have been most successfully applied to organisms composed of relatively large and accessible cells. The combined application of the different approaches to one system should improve our understanding of the process of commitment as a whole. Recently, a method has been devised to study cell lineage in Drosophila embryos at the single cell level. This method has been used to analyse the lineages, as well as the state of commitment of single cell progenitors from various ectodermal, mesodermal and endodermal anlagen and of the pole cells. The results obtained from a clonal analysis of wild-type larval structures are discussed in this review.


The Analyst ◽  
2021 ◽  
Author(s):  
Wen Qin ◽  
Hans-Joachim Stärk ◽  
Thorsten Reemtsma

A new method for determining the concentration of elements in single cells by the SC-ICP-TOF-MS method based on a metal-containing stain as a cell volume proxy has been developed and validated.


Sign in / Sign up

Export Citation Format

Share Document