scholarly journals MiR-3064 in Epicardial Adipose-Derived Exosomes Targets Neuronatin to Regulate Adipogenic Differentiation of Epicardial Adipose Stem Cells

2021 ◽  
Vol 8 ◽  
Author(s):  
Wenkai Yang ◽  
Hanjian Tu ◽  
Kai Tang ◽  
Haozhong Huang ◽  
Shi Ou ◽  
...  

Backgroud: The metabolism of epicardial adipose tissue (EAT) is closely related to coronary atherosclerotic heart disease (CAHD), but the specific mechanism is not fully understood. In this study, we investigated the effects of EAT microenvironment on adipose metabolism from the viewpoint of EAT-derived exosomes and epicardial adipose stem cells (EASCs).Methods: EAT samples from CAHD patients and non-CAHD patients were collected to obtain exosomes via tissue culture. MiRNA sequencing was performed to analyze differences in miRNA expression in exosomes between groups. Luciferase reporter assay was then performed to verify the miRNA target gene. EAT was digested by collagenase to obtain EASCs, which were induced to mature adipocytes in vitro. Immunochemical staining and western blotting were performed to detect protein expression levels.Results: The results showed that CAHD patients had higher levels of EASCs in EAT, and no significant difference in the adipogenic differentiation ability of EASCs was observed between CAHD and non-CAHD patients in vitro. This indicates that the EAT microenvironment is a key factor affecting the adipogenic differentiation of EASCs. The EAT-derived exosomes from CAHD patients inhibited adipogenic differentiation of EASCs in vitro. Sequencing analysis showed that miR-3064-5p was highly expressed in EAT-derived exosomes in CAHD patients, and its inhibitor could improve the adipogenic differentiation of EASCs. Luciferase reporter assay results showed that the target gene of miR-3064-5p is neuronatin (Nnat). Nnat remained silent in EASCs and was less expressed in EAT of CAHD patients.Conclusion: Abovementioned results suggest that Nnat is the key to regulating the adipogenic differentiation of EASCs, and miR-3064-5p in EAT-derived exosomes can inhibit the expression of Nnat by targeting its mRNA, thereby affecting the adipogenic differentiation of EASCs.

2016 ◽  
Vol 38 (2) ◽  
pp. 809-820 ◽  
Author(s):  
Lei Yang ◽  
Dawei Ge ◽  
Xiaojian Cao ◽  
Yingbin Ge ◽  
Hongtao Chen ◽  
...  

Background/Aims: Postmenopausal osteoporosis is closely associated with reduction in the differentiation of mesenchymal stem cells (MSCs) into osteoblasts. Previous studies have demonstrated that miR-214 plays an important role in the genesis and development of postmenopausal osteoporosis. Here, we performed this study to investigate the potential mechanism by which miR-214 regulates osteoblast differentiation of MSCs. Methods: First, we explored the expression of miR-214 in MSCs of osteoporotic mice. Next, we examined the change of miR-214 during osteoblast differentiation of MSCs. Then, MSCs were infected with lentiviral vectors expressing miR-214 or miR-214 sponge to investigate the effect of miR-214 on osteoblast differentiation of MSCs. Further, bioinformatics analysis and luciferase reporter assay were performed to identify and validate the target gene of miR-214. Results: MiR-214 was up-regulated in MSCs of osteoporotic mice and down-regulated during osteoblast differentiation of MSCs. Furthermore, overexpression of miR-214 inhibited osteoblast differentiation of MSCs in vitro, whereas inhibition of miR-214 function promoted this process, evidenced by increased expression of osteoblast-specific genes, alkaline phosphatase (ALP) activity, and matrix mineralization. Bioinformatics, Western blot analysis and luciferase reporter assay demonstrated that FGFR1 is a direct target of miR-214. Conclusions: MiR-214 attenuates osteogenesis by inhibiting the FGFR1/FGF signaling pathway. Our findings suggest that targeting miR-214 promises to be a potential therapy in treatment of postmenopausal osteoporosis.


2021 ◽  
Vol 26 (1) ◽  
Author(s):  
Yi Feng ◽  
Pei-Yan He ◽  
Wei-Dong Kong ◽  
Wan-Jing Cen ◽  
Peng-Lin Wang ◽  
...  

Abstract Background Iron overload can promote the development of osteoporosis by inducing apoptosis in osteoblasts. However, the mechanism by which miRNAs regulate apoptosis in osteoblasts under iron overload has not been elucidated. Method The miRNA expression profile in MC3T3-E1 cells under iron overload was detected by next generation sequencing. qRT-PCR was used to determine the expression of miR-3074-5p in MC3T3-E1 cells under iron overload. The proliferation of MC3T3-E1 cells was tested using CCK-8 assays, and apoptosis was measured using flow cytometry. The miRanda and TargetScan databases were used to predict the target genes of miR-3074-5p. Interaction between miR-3074-5p and the potential target gene was validated by qRT-PCR, luciferase reporter assay and western blotting. Results We found that iron overload decreased the cell viability and induced apoptosis of MC3T3-E1 cells. The results of next generation sequencing analysis showed that miR-3074-5p expression was significantly increased in MC3T3-E1 cells under iron overload conditions, which was confirmed by further experiments. The inhibition of miR-3074-5p attenuated the apoptosis of iron-overloaded MC3T3-E1 cells. Furthermore, the expression of Smad4 was decreased and was inversely correlated with miR-3074-5p expression, and overexpression of Smad4 partially reversed the viability inhibition of iron-overloaded MC3T3-E1 cells by relieving the suppression of ERK, AKT, and Stat3 phosphorylation, suggesting its regulatory role in the viability inhibition of iron-overloaded MC3T3-E1 cells. The luciferase reporter assay results showed that Smad4 was the target gene of miR-3074-5p. Conclusion miR-3074-5p functions as an apoptosis promoter in iron-overloaded MC3T3-E1 cells by directly targeting Smad4.


2021 ◽  
Vol 20 ◽  
pp. 153303382098586
Author(s):  
Xuhui Wu ◽  
Gongzhi Wu ◽  
Huaizhong Zhang ◽  
Xuyang Peng ◽  
Bin Huang ◽  
...  

Objective: We aimed to investigate the mechanism of the regulatory axis of miR-196b/AQP4 underlying the invasion and migration of lung adenocarcinoma (LUAD) cells. Methods: LUAD miRNA and mRNA expression profiles were downloaded from TCGA database and then differential analysis was used to identify the target miRNA. Target gene for the miRNA was obtained via prediction using 3 bioinformatics databases and intersection with the differentially expressed mRNAs searched from TCGA-LUAD. Then, qRT-PCR and western blot were used to validate the expression of miR-196b and AQP4. Dual-luciferase reporter assay was performed to confirm the targeting relationship between miR-196b and AQP4. Transwell assay was used to investigate the migration and invasion of LUAD cells. Results: MiR-196b was screened out by differential and survival analyses, and the downstream target gene AQP4 was identified. In LUAD, miR-196b was highly expressed while AQP4 was poorly expressed. Besides, overexpression of miR-196b promoted cell invasion and migration, while overexpression of AQP4 had negative effects. Moreover, the results of the dual-luciferase reporter assay suggested that AQP4 was a direct target of miR-196b. In addition, we also found that overexpressing AQP4 could suppress the promotive effect of miR-196b on cancer cell invasion and migration. Conclusion: MiR-196b promotes the invasion and migration of LUAD cells by down-regulating AQP4, which helps us find new molecular targeted therapies for LUAD.


2018 ◽  
Vol 51 (2) ◽  
pp. 886-896 ◽  
Author(s):  
Xiaoya Dong ◽  
Zhigang Fang ◽  
Mingxue Yu ◽  
Ling Zhang ◽  
Ruozhi Xiao ◽  
...  

Background/Aims: Among different molecular candidates, there is growing data to support that long noncoding RNAs (lncRNAs) play a significant role in acute myeloid leukemia (AML). HOXA-AS2 is significantly overexpressed in a variety of tumors and associated with anti-cancer drug resistance, however, little is known regarding the expression and function of HOXA-AS2 in the chemoresistance of AML. In this study, we aimed to determine the role and molecular mechanism of HOXA-AS2 in adriamycin-based chemotherapy resistance in AML cells. Methods: Quantitative real-time PCR was used to detect HOXA-AS2 expression in the BM samples and ADR cell lines, U/A and T/A cells. Furthermore, the effects of HOXA-AS2 silencing on cell proliferation and apoptosis were assessed in vitro by CCK8 and flow cytometry, and on tumor growth in vivo. Furthermore, bioinformatics online programs predicted and luciferase reporter assay were used to validate the association of HOXA-AS2 and miR-520c-3p in AML. Results: In this study, we showed that HOXA-AS2 is significantly upregulated in BM samples from AML patients after treatment with adriamycin-based chemotherapy and in U/A and T/A cells. Knockdown of HOXA-AS2 inhibited ADR cell proliferation in vitro and in vivo and promoted apoptosis. Bioinformatics online programs predicted that HOXA-AS2 sponge miR-520c-3p at 3’-UTR with complementary binding sites, which was validated using luciferase reporter assay and anti-Ago2 RIP assay. HOXA-AS2 could negatively regulate the expression of miR-520c-3p in ADR cells. S100A4 was predicted as a downstream target of miR-520c-3p, which was confirmed by luciferase reporter assay. Conclusion: Our results suggest that HOXA-AS2 plays an important role in the resistance of AML cells to adriamycin. Thus, HOXA-AS2 may represent a therapeutic target for overcoming resistance to adriamycin-based chemotherapy in AML.


2020 ◽  
Vol 40 (9) ◽  
Author(s):  
Huayao Zhang ◽  
Jingwen Peng ◽  
Jianguo Lai ◽  
Haiping Liu ◽  
Zhiyuan Zhang ◽  
...  

Abstract Breast cancer (BC) is a common cancer with poor survival. The present study aimed to explore the effect of miR-940 on the process of BC cells and its target gene FOXO3. The expression of miR-940 was assessed in BC tissues and cells using qRT-PCR. Furthermore, the correlation between miR-940 and prognosis of BC patients from the TCGA database was analyzed. CCK8 assays and colony formation assays were used to explore the effect of miR-940 on BC cell proliferation. The invasion abilities were detected by transwell assays. Luciferase reporter assay was performed to scrutinize the relationship between miR-940 and FOXO3. Finally, rescue experiments were performed through FOXO3 down-regulation and miR-940 inhibitors by using CCK8 assays, colony formation assays and transwell assays. miR-940 was significantly up-regulated in BC cells and tissues. In addition, the high level of miR-940 correlated with poor survival of BC patients (P=0.023). CCK8 assays, colony formation assays and transwell assays indicated that miR-940 promoted the proliferation and invasion abilities of BC cells. The luciferase reporter assay suggested that miR-940 directly targeted FOXO3. Moreover, we found that the effect of si-FOXO3 was rescued by miR-940 inhibitors in BC cells. miR-940 may promote the proliferation and invasion abilities of BC cells by targeting FOXO3. Our study suggested that miR-940 could be a novel molecular target for therapies against BC.


2007 ◽  
Vol 19 (1) ◽  
pp. 227
Author(s):  
A. C. Boquest ◽  
A. Noer ◽  
A. L. Sørensen ◽  
K. Vekterud ◽  
P. Collas

Mesenchymal stem cells (MSCs) have received intense research interest due to their perceived potential application in regenerative medicine; nevertheless, MSCs are primarily restricted to form mesodermal cell types. Adipose stem cells (ASCs) with a CD34+ CD105+ CD45– CD31– immunophenotype can be obtained in an uncultured state with high purity from the stromal vascular fraction of human liposuction material (Boquest et al. 2005 Mol. Biol. Cell 16, 1131–1141). While ASCs differentiate readily into adipocytes, their endothelial lineage commitment has been scarcely reported, and controversy remains regarding ASC contribution to vascularization. To address the epigenetic commitment of ASCs to adipogenic and endothelial lineages, we carried out a bisulfite sequencing analysis of CpG methylation in the promoters of adipogenic (LEP, PPARG2, FABP4, LPL), endothelial (CD31, CD144), and myogenic (MYOG) genes in freshly isolated and in clonal ASC cultures in relation to gene expression and differentiation potential. Uncultured ASCs display mosaic hypomethylation of adipogenic promoters, in contrast to MYOG, CD31, or CD144 which are methylated (Noer et al. 2006 Mol. Biol. Cell 17, in press). Nevertheless, CpG methylation does not reflect transcriptional status of these genes in undifferentiated cells. Culture and adipogenic differentiation of ASCs maintains the hypomethylated profile of adipogenic promoters and the hypermethylation of non-adipogenic promoters. Endothelial stimulation of ASCs in methylcellulose elicits tubule-like networks, up-regulation of CD31 and CD144, and restrictive induction of a CD31+ CD144+ immunophenotype. Discrete and lineage-specific changes in CpG methylation in the CD31 and CD144 promoters take place but no global demethylation that marks endothelial cells occurs. Promoters not involved in endothelial differentiation retain a methylation profile characteristic of undifferentiated cells. Hypermethylation of CD31 and CD144 suggests a restricted commitment of ASCs to the endothelial lineage. This contrasts with hypomethylation of adipogenic promoters which reflects a propensity toward adipogenic differentiation. Despite the up-regulation of lineage-specific transcripts, overall maintenance of promoter methylation after adipogenic, osteogenic, and endothelial differentiation suggests the maintenance of an epigenetic signature characteristic of undifferentiated cells. Analysis of CpG methylation at lineage-specific promoters should provide a robust assessment of epigenetic commitment of stem cells to a specific lineage.


2020 ◽  
Vol 318 (5) ◽  
pp. C848-C856 ◽  
Author(s):  
Rongfeng Shi ◽  
Yinpeng Jin ◽  
Weiwei Hu ◽  
Weishuai Lian ◽  
Chuanwu Cao ◽  
...  

More and more evidence advises that circular RNAs (circRNAs) function critically in regulating different disease microenvironments. Our previous study found that autotransplantation of adipose-derived mesenchymal stem cells (ADSCs) promotes diabetes wound healing. Exosomes derived in ADSCs play an important regulatory role. This study aimed to characterize if mmu_circ_0000250 played a role in ADSC-exosome-mediated full-thickness skin wound repair in diabetic rats. Endothelial progenitor cells (EPCs) were selected to study the therapeutic mechanism of exosomes in high-glucose (HG)-induced cell damage and dysfunction. Analysis and luciferase reporter assay were utilized to explore the interaction among mmu_circ_0000250, miRNA (miR)-128-3p, and sirtuin (SIRT)1. The diabetic rats were used to confirm the therapeutic effect of mmu_circ_0000250 against exosome-mediated wound healing. Exosomes containing a high concentration of mmu_circ_0000250 had a greater therapeutic effect on restoration of the function of EPCs by promotion autophagy activation under HG conditions. Expression of mmu_circ_0000250 promoted SIRT1 expression by miR-128-3p adsorption, which was confirmed via luciferase reporter assay and bioinformatics analysis. In vivo, exosomes containing a high concentration of mmu_circ_0000250 had a more therapeutic effect on wound healing when compared with wild-type exosomes from ADSCs. Immunohistochemistry and immunofluorescence detection showed that mmu_circ_0000250 increased angiopoiesis with exosome treatment in wound skin and suppressed apoptosis by autophagy activation. In conclusion, we verified that mmu_circ_0000250 enhanced the therapeutic effect of ADSC-exosomes to promote wound healing in diabetes by absorption of miR-128-3p and upregulation of SIRT1. Therefore, these findings advocate targeting the mmu_circ_0000250/miR-128-3p/SIRT1 axis as a candidate therapeutic option for diabetic ulcers.


2020 ◽  
Vol 19 ◽  
pp. 153303382098010
Author(s):  
Chuan Cheng ◽  
Huixia Li ◽  
Jiujian Zheng ◽  
Jie Xu ◽  
Peng Gao ◽  
...  

Objective: LncRNAs are non-coding RNAs exerting vital roles in the occurrence and development of various cancer types. This study tended to describe the expression pattern of FENDRR in colorectal cancer (CRC), and further investigate the role of FENDRR in CRC cell biological behaviors. Methods: Gene expression profile of colon cancer was accessed from the TCGA database, and then processed for differential analysis for identification of differentially expressed lncRNAs and miRNAs. Some in vitro experiments like qRT-PCR, MTT, colony formation assay, wound healing assay and Transwell assay were performed to assess the effect of FENDRR on cell biological behaviors. Dual-luciferase reporter assay was conducted to further validate the targeting relationship between FENDRR and miR-424-5p, and rescue experiments were carried out for determining the mechanism of FENDRR/miR-424-5p underlying the proliferation, migration and invasion of CRC cells. Results: Bioinformatics analysis suggested that FENDRR was significantly down-regulated in CRC tissue, and low FENDRR was intimately correlated to poor prognosis. FENDRR overexpression could greatly inhibit cell proliferation, migration and invasion. Besides, there was a negative correlation between FENDRR and miR-424-5p. Dual-luciferase reporter assay indicated that miR-424-5p was a direct target of FENDRR. Rescue experiments discovered that FENDRR exerted its role in cell proliferation, migration and invasion in CRC via targeting miR-424-5p. Conclusion: FENDRR is poorly expressed in CRC tissue and cells, and low FENDRR is responsible for the inhibition of cell proliferation, migration and invasion of CRC by means of targeting miR-424-5p.


2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Derek S. Wheeler ◽  
John S. Giuliano ◽  
Patrick M. Lahni ◽  
Alvin Denenberg ◽  
Hector R. Wong ◽  
...  

Albumin appears to have proinflammatory effectsin vitro. We hypothesized that albumin would induce a state of tolerance to subsequent administration of lipopolysaccharide (LPS)in vitroandin vivo. RAW264.7 and primary peritoneal macrophages were treated with increasing doses of bovine serum albumin (BSA) and harvested for NF-κB luciferase reporter assay or TNF-αELISA. In separate experiments, RAW264.7 cells were preconditioned with 1 mg/mL BSA for 18 h prior to LPS (10 μg/mL) treatment and harvested for NF-κB luciferase reporter assay or TNF-αELISA. Finally, C57Bl/6 mice were preconditioned with albumin via intraperitoneal administration 18 h prior to a lethal dose of LPS (60 mg/kg body wt). Blood was collected at 6 h after LPS administration for TNF-αELISA. Albumin produced a dose-dependent and TLR-4-dependent increase in NF-κB activation and TNF-αgene expressionin vitro. Albumin preconditioning abrogated the LPS-mediated increase in NF-κB activation and TNF-αgene expressionin vitroandin vivo. The clinical significance of these findings remains to be elucidated.


2020 ◽  
Author(s):  
Nan Yang ◽  
Tianxiang Chen ◽  
Bowen Yao ◽  
Liang Wang ◽  
Runkun Liu ◽  
...  

Abstract Background: Long non-coding RNAs (lncRNAs) have obtained growing attention due to their potential effects as novel regulators in various tumors. This study aimed to investigate the expression and roles of lncRNA ZFPM2-AS1 in the progression of hepatocellular carcinoma (HCC). Methods: Transwell was used to determine migration and invasion of HCC cells in vitro. The lung metastasis mouse model was established to detect tumor metastasis of HCC in vivo. The direct binding of miR-3612 to 3'UTR of DAM15 was confirmed by luciferase reporter assay. The expression of ZFPM2-AS1 and miR-3612 in HCC specimens and cell lines were detected by real-time PCR. The correlation among ZFPM2-AS1 and miR-3612 were disclosed by a dual-luciferase reporter assay, RIP assay and biotin pull-down assay.Results: In present study, we found that ZFPM2-AS1 was up-regulated in HCC tissues and cells and its upregulation was associated with TNM stage, vascular invasion, and poor prognosis of HCC patients. Functionally, gain- and loss-of-function experiments indicated that ZFPM2-AS1 promoted cell migration, invasion and EMT progress in vitro and in vivo. ZFPM2-AS1 could function as a competing endogenous RNA (ceRNA) by sponging miR-3612 in HCC cells. Mechanically, miR-3612 inhibited HCC metastasis and alternation of miR-3612 reversed the promotive effects of ZFPM2-AS1 on HCC cells. In addition, we confirmed that ADAM15 was a direct target of miR-3612 in HCC and mediated the biological effects of miR-3612 and ZFPM2-AS1 in HCC. Curcumin, an active derivative from turmeric, exerts its anticancer effects through ZFPM2-AS1/miR-3612/ADAM15 pathway. Our data identified ZFPM2-AS1 as a novel oncogenic lncRNA and correlated malignant clinical outcomes in HCC patients. Conclusions: ZFPM2-AS1 performed as oncogenic role via targeting miR-3612 and subsequently promoted ADAM15 expression in HCC. Our results revealed that ZFPM2-AS1 could be a potential prognostic biomarker and therapeutic target for HCC.


Sign in / Sign up

Export Citation Format

Share Document