scholarly journals Preliminary Experimental Study of Methane Adsorption Capacity in Shale After Brittle Deformation Under Uniaxial Compression

2021 ◽  
Vol 9 ◽  
Author(s):  
Mingliang Liang ◽  
Zongxiu Wang ◽  
Guodong Zheng ◽  
Xiaobao Zhang ◽  
Hugh Christopher Greenwell ◽  
...  

This paper presents a preliminary experimental study on methane adsorption capacity in shales before and after artificial deformation. The experimental results are based on uniaxial compression and methane isothermal adsorption tests on different shale samples from the Silurian Longmaxi Formation, Daozhen County, South China. Two sets of similar cylindrical samples were drilled from the each same bulk sample, one set was subjected to a uniaxial compressive simulation test and then crushed as artificial deformed shale sample, the other set was directly crushed as the original undeformed shale sample. And then we conducted a comparative experimental study of the methane adsorption capacity of original undeformed and artificially deformed shales. The uniaxial compression simulation results show that the failure mode of all samples displayed brittle deformation. The methane isothermal adsorption results show that the organic matter content is the main controlling factor of shale methane adsorption capacity. However, the comparative results also show that the compression and deformation have an effect on methane adsorption capacity, with shale methane adsorption capacity decreasing by about 4.26–8.48% after uniaxial compression deformation for the all shale samples in this study.

Energies ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 986 ◽  
Author(s):  
Yingjin Wang ◽  
Dameng Liu ◽  
Yidong Cai ◽  
Xiawei Li

The petrophysical properties of coal will vary during coalification, and thus affect the methane adsorption capacity. In order to clarify the variation rule and its controlling effect on methane adsorption, various petrophysical tests including proximate analysis, moisture measurement, methane isothermal adsorption, mercury injection, etc. were carried out on 60 coal samples collected from the Junggar, Ordos and Qinshui basins in China. In this work, the boundary values of maximum vitrinite reflectance (Ro,m) for dividing low rank, medium rank and high rank coals are set as 0.65% and 2.0%. The results show that vitrinite is the most abundant maceral, but the maceral contents are controlled by sedimentation without any relation to coal rank. Both the moisture content and porosity results show higher values in the low ranks and stabilized with Ro,m beyond 1%. Ro,m and VL (daf) show quadratic correlation with the peak located in Ro,m = 4.5–5%, with the coefficient (R2) reaching 0.86. PL decrease rapidly before Ro,m = 1.5%, then increase slowly. DAP is established to quantify the inhibitory effect of moisture on methane adsorption capacity, which shows periodic relationship with Ro,m: the inhibitory effect in lignite is the weakest and increases during coalification, then remains constant at Ro,m = 1.8% to 3.5%, and finally increases again. In the high metamorphic stage, clay minerals are more moisture-absorbent than coal, and the inherent moisture negatively correlates with the ratio of vitrinite to inertinite (V/I). During coalification, micro gas pores gradually become dominant, fractures tends to be well oriented and extended, and clay filling becomes more common. These findings can help us better understand the variation of petrophysical properties and adsorption capacity in different rank coals.


2012 ◽  
Vol 512-515 ◽  
pp. 520-526
Author(s):  
Hang Zhou Yuan ◽  
Quan Guo Zhang ◽  
Yan Yan Jing ◽  
Xiang Feng Zhang ◽  
Yi Wang

This paper used respective ratios of 50%, 60%, 70%, 80%, 90% and 100% of straw and pig excrement as raw materials to produce biogas and fertilizer. The test focused on gas production, the contents of available nutritional elements nitrogen, phosphorus and potassium, and the organic matter content. The experimental results demonstrate the fermentation can produce more biogas, nitrogen, phosphorus, potassium, and organic mass under the conditions which the fermentation cycle is 15 days and the ratio of straw and excrement is 70%.


Fuel ◽  
2016 ◽  
Vol 184 ◽  
pp. 10-17 ◽  
Author(s):  
Xingzhi Ma ◽  
Yan Song ◽  
Shaobo Liu ◽  
Lin Jiang ◽  
Feng Hong

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Xianglu Tang ◽  
Wei Wu ◽  
Guanghai Zhong ◽  
Zhenxue Jiang ◽  
Shijie He ◽  
...  

Adsorbed gas is an important component of shale gas. The methane adsorption capacity of shale determines the composition of shale gas. In this study, the methane adsorption capacity of marine, transitional, and lacustrine shales in the Sichuan Basin was analyzed through its isothermal adsorption, mineral composition, water content, etc. The results show that the methane adsorption capacity of marine (Qiongzhusi Formation and Longmaxi Formation), transitional (Longtan Formation), and lacustrine (Xujiahe Formation and Ziliujing Formation) shales is significantly different. The Longtan Formation has the strongest methane adsorption capacity. This is primarily related to its high organic matter and organic matter type III content. The methane adsorption capacity of the lacustrine shale was the weakest. This is primarily related to the low thermal evolution degree and the high content of water-bearing clay minerals. Smectite has the highest methane adsorption capacity of the clay minerals, due to its crystal structure. The water content has a significant effect on methane adsorption largely because water molecules occupy the adsorption site. Additionally, the temperature and pressure in a specific range significantly affect methane adsorption capacity.


2018 ◽  
Vol 7 (5) ◽  
pp. 386-395 ◽  
Author(s):  
Abdellah El Boukili ◽  
Nidae Loudiyi ◽  
Ahmed El Bazaoui ◽  
Abderrahim El Hourch ◽  
M'Hamed Taibi ◽  
...  

The present study was conducted in order to investigate the adsorption and desorption behavior of Mefenpyr-diethyl (MFD) using the batch equilibration technique in four soils, with different ranges of organic matter content, from different regions of Morocco orders of Benimellal (Soil 1), Settat (Soil 2), Sidi Bettach (Soil 3) and EL Hajeb (Soil 4). The adsorption isotherm models Langmuir, linear and Freundlich were used to compare the adsorption capacity of the soils. The results indicated that the Freundlich equation provided the best fit for all adsorption data. The values of KF and Kd ranged from 4.45 to 15.9 and 4.30 to 18.30 L.kg-1 , respectively. The calculated total percentage of desorption values from the Soil 1, Soil 2, Soil 3 and Soil 4 after the four desorption process were 59 %; 55,6 %; 37,5 % and 52,5%, respectively. Highest adsorption and desorption were observed in soil 1, and the lowest was in soil 3. According to the adsorption and desorption results, organic matter and clay seemed to be the most important factors influencing the adsorption capacity of MFD.


2014 ◽  
Vol 6 (1) ◽  
pp. 33-38
Author(s):  
Gabriella Rétháti ◽  
Adrienn Vejzer ◽  
Barbara Simon ◽  
Ramadan Benjared ◽  
György Füleky

Abstract Organic matter input into soils is essential regarding agricultural, environmental and soil science aspects as well. However, the application of the pyrolysed forms of biochars and materials with different organic matter content gained more attention in order to decrease the emission of the green house gases (CO2, N2O) from the soil. During pyrolysis, the materials containing high organic matter (biomass-originated organic matter) are heated in oxygen-free (or limited amount of oxygen) environment. As a result, the solid phase, which remains after eliminating the gases and liquid phase, is more stable compared to the original product, it cannot be mineralized easily in the soil and its utilization is more beneficial in terms of climatic aspects. Furthermore, it can improve soil structure and it can retain soil moisture and cations in the topsoil for long periods of time, which is very important for plants. In our experiment, the effects of biochar and bone char were examined on soils by zinc adsorption experiments. Based on our experiments, we concluded that the pyrolysis products can have significant Zn adsorption capacity compared to the soil. Bone ash can adsorb more Zn than the charcoal product. The Zn adsorption capacity of soils treated by pyrolysis products can be described by Langmuir adsorption isotherms. However, based on the amount of pyrolysis products, one or two term Langmuir isotherm fits well on the experiment data, which depends on the time the pyrolysis product has spent in the soil.


2016 ◽  
Vol 1 (2) ◽  
pp. 165-172 ◽  
Author(s):  
Jiaai Zhong ◽  
Guojun Chen ◽  
Chengfu Lv ◽  
Wei Yang ◽  
Yong Xu ◽  
...  

2019 ◽  
Vol 38 (1) ◽  
pp. 79-91 ◽  
Author(s):  
Langtao Liu ◽  
Chao Jin ◽  
Lei Li ◽  
Chenyang Xu ◽  
Pengfei Sun ◽  
...  

Maceral compositions take a great role in coalbed methane adsorption. Two controversial viewpoints coexist on the effect of maceral compositions to coalbed methane adsorption. One is vitrinite has better adsorption capacity than inertinite and the other is inertinite has enhanced adsorption capacity than vitrinite. In order to clarify this issue, a series of coal samples were collected and highly purified vitrinite and inertinite concentrates were gained by heavy-fluid flotation and centrifugal separation. Isothermal adsorption experiments of methane were performed to these concentrates with equilibrium moisture and their ultimate adsorption volume were obtained finally. The results show that the adsorption capacity of vitrinite is weaker and the capacity of inertinite is stronger for low-rank coal. For high-rank coal, the adsorption capacity of vitrinite is stronger and the capacity of inertinite is weaker. Along with the increase of coal rank, the adsorption capacity of vitrinite rises gradually and the adsorption capacity of inertinite declines little by little. This result shows that the adsorption capacity of coal to methane not only relates to contents of vitrinite and inertinite, but also relates to metamorphic grade of the coal, because with the increase of metamorphism of coal, molecular structure, functional group and pore characteristic of vitrinite and inertinite change gradually, which results in tremendous changes in the adsorption capacity of coal.


1969 ◽  
Vol 57 (4) ◽  
pp. 286-293 ◽  
Author(s):  
L. C. Liu ◽  
H. R. Cibes-Viadé

The adsorption capacity of Fluometuron, Prometryne, Sencor, and 2,4-D by 48 local soils was determined spectrophotometrically. The mean adsorptivities of the four herbicides by these soils were as follows: Prometryne 37.0 percent, Sencor 23.0 percent, Fluometuron 22.6 percent, and 2,4-D 12.4 percent. The results indicated that organic matter content was the factor most highly correlated with adsorption of these herbicides by the 48 soils. Cation exchange capacity was found to correlate significantly with adsorption of Fluometuron, Prometryne, and Sencor. Such was not the case with 2,4-D. Correlation between clay content and adsorption of Fluometuron and Sencor was statistically significant. In contrast, no significant correlation was noted between clay content and adsorption of Prometryne and 2,4-D.


Sign in / Sign up

Export Citation Format

Share Document